
EL 3110 Computer Architecture Lab 2008

Lab #1

Introduction to SPIM

SPIM is a simulator that can run programs for the MIPS Rx000 architectures. The simulator may
load and execute assembly language programs. The process which a source file (assembly language)
is translated to an executable file contains two stages:
• assembling (implemented by the assembler)
• linking (implemented by the linker)

An executable file must be loaded before the CPU can actually run that program. Figure 1. shows
the relation between the processes involved in translation and loading and various types of files they
manipulate. The assembler performs the translation of an assembly language module into machine
code. A program may have several modules, each of them a part of the program. This is usually the
case when you build an application from several files. The output of the assembler is an object
module for each source module. Object modules contain machine code. The translation of a module
is not complete if the module uses a symbol (a label) that is defined in a different module or is part
of a library.

The linker is program that resolves
external references. In other words
the linker will match a symbol used
in a source module with it’s
definition found in a different module
or in a library. The output of the
linker is an executable file.

File suffixes indicate the type of the
file. Files that contain assembly code
have the suffix “.s’ or “.asm”.
Compilers use the first convention.
Files with object programs have the
suffix “.o” and executables don’t
usually have any suffix.

The process of translation in SPIM is
transparent to the user. This means
that you don’t have to deal with an

assembler, a linker and a loader as separate programs. Provided you have written a correct assembly
language program, the only thing you have to do is to start the simulator and then indicate what
program you want to execute. The whole process of translation is hidden.

SPIM implements both a simple, terminal-style interface and a visual windowing interface. On Unix,

the SPIM program provides the terminal interface and the xspim program provides the X window

Source

Code

Assembler

Object

Code

Linker

Source

Code

Assembler

Object

Code

Source

Code

Assembler

Object

Code
Libraries

Executable

Figure 1. The Translation Process

interface. On PCs, the SPIM program provides the console interface and PCSpim provides the
Windows interface.

Section 1. First SPIM Program

The first example SPIM program puts bit patterns representing integers into two registers. Then it
adds the two patterns together. The screen shots for this example are from a MS Win system. Unix
and Linux should be close.

1.1 Start SPIM

First click on the start button => all programs => PCSpim. On windows machines, the opening
screen is as below. The screen is divided into four parts:

1. Register Display: This shows the
contents (bit patterns in hex) of all
32 general purpose registers, the
floating point registers, and a few
others.

2. Text Display: This shows the
assembly language program source,
the machine instructions (bit
patterns in hex) they correspond to,
and the addresses of their memory
locations.

3. Data and Stack Display: This shows
the sections of MIPS memory that
hold ordinary data and data which
has been pushed onto a stack.

4. SPIM Messages: This shows
messages from the simulator (often
error messages).

Messages from the simulated computer appear in the console window when an assembly program
that is running (in simulation) writes to the (simulated) monitor. If a real MIPS computer were
running you would see the same messages on a real monitor.

Messages from the simulator are anything the simulator needs to write to the user of the simulator.
These are error messages, prompts, and reports.

Now that the simulator is running you need to assemble and load a program. Depending on the
settings of the simulator, there already may be some machine instructions in simulated memory.
These instructions assist in running your program. If you start the simulator from the Simulator menu
this code will run, but it will be caught in an infinite loop. To stop it, click on Simulator; Break.

Figure 2 SPIM Windows

1.2 Editing A Program

A source file (in assembly language or in any programming language) is the text file containing

programming language statements created (usually) by a human programmer. Open Notepad to
create a file called addup.asm. Type in the following program

Program to add two plus three

 .text

 .globl main

main:

 ori $8,$0,0x2 # put two's comp. two into register 8

 ori $9,$0,0x3 # put two's comp. three into register 9

 addu $10,$8,$9 # add register 8 and 9, put result in 10

End of file

The first "#" of the first line is in column one. The character "#" starts a comment; everything on the
line from "#" to the right is ignored. Sometimes I use two in a row for emphasis, but only one is
needed. Each of the three lines following main: corresponds to one machine instruction.

1.3 Setting Up SPIM

Each MIPS machine instruction is 32 bits (four bytes) long. The three lines after main: call for three
machine instructions. The remaining lines consist of information for the assembler and comments
(for the human). For this first program some SPIM options must be set. In the menu bar, click on
Simulator then Settings to get the settings dialog. Select the options as in Figure 3. These settings
simulate a bare machine with no user conveniences. Later we will include the conveniences.

Figure 3 SPIM Setup window

1.4 Loading the source program

Modern computers boot up to a user-friendly state. Usually there is some firmware (permanent
machine code in EEPROM) in a special section of the address space. This starts running on
power-up and loads an operating system. SPIM can simulate some basic firmware, but we have
turned off that option.

Load the program into the SPIM simulator by clicking File then Open. Click on the name
(addup.asm) of your source file. You may have to navigate through your directories using the file
dialog box.

If there are mistakes in addup.asm, SPIM's message display panel shows the error messages. Use
your editor to correct the mistakes, save the file then re-open the file in SPIM.

1.5 Assembling the program

Loading the source file into SPIM does two things:
(1) The file is assembled into machine instructions, and
(2) The instructions are loaded into SPIM's memory. The text display shows the result.

The text display is the second
window from the top. You
should see some of the source
file in it and the machine
instructions they assembled
into. The leftmost column are
addresses in simulated memory.

1.6 Setting the PC

The program counter is the part of the processor that contains the address of the current machine
instruction. (Actually, it contains the address of the first of the four bytes that make up the current
instruction.) In the register display (top window) you see that the PC starts out at zero. This must be
changed to 0x00400000, the address of the first instruction. To do this, select (click on) Simulator;
Set Value in the menu bar.

In the set value dialog, type PC in the top text box and 0x00400000 in the bottom text box. Click on
OK and the PC (in the register display) should change.

Figure 4. Assembler Result

1.7 Running the program

Push F10 to execute one instruction. The first instruction executes, loading register eight with a 2
(see the register display). The PC advances to the next instruction 0x00400004 and the message
display window shows the instruction that just executed.

Figure 6. Set the PC value

Figure 7. Register Content

Push F10 two more times to execute the remaining instructions. Each instruction is 32 bits (four
bytes) long, so the PC changes by four each time. After the third instruction, register 8 will have the
sum of two plus three.

1.8 Program’s Result

The bit patterns for these small integers are easy to figure out. You may have to use the slider on the
register display to see register ten.

If you push F10 again, the PC will point at a word in memory that contains bits not intended to be
a machine instruction. However the simulator will try to execute those bits. A real processor would
"crash" at this point. (This is sometimes called "falling off the end of a program"). The simulator
prints an error message in the bottom panel. You are done and exit SPIM.

1.9 Program Explanation

There are various ways for a program executing on a real machine to return control to the operating
system. But we have no OS, so for now we will single step instructions. Hopefully you are
wondering how the program works. Here it is again:

Program to add two plus three

 .text

 .globl main

main:

 ori $8,$0,0x2 # put two's comp. two into register 8

 ori $9,$0,0x3 # put two's comp. three into register 9

 addu $10,$8,$9 # add register 8 and 9, put result in 10

End of file

Figure 8. Program’s Result

The first line of the program is a comment. It is ignored by the assembler and results in no machine
instructions.

.text is a directive. A directive is a statement that tells the assembler something about what the
programmer wants, but does not itself result in any machine instructions. This directive tells the
assembler that the following lines are ".text" -- source code for the program.

.globl main is another directive. It says that the identifier main will be used outside of this source
file (that is, used "globally") as the label of a particular location in main memory.

Blank lines are ignored. The line main: defines a symbolic address (sometimes called a statement
label). A symbolic address is a symbol (an identifier) that is the source code name for a location in
memory. In this program, main stands for the address of the first machine instruction (which turns
out to be 0x00400000). Using a symbolic address is much easier than using a numerical address.
With a symbolic address, the programmer refers to memory locations by name and lets the assembler
figure out the numerical address.

The symbol main is global. This means that several source files can use the symbol main to refer to
the same location in storage. (However, SPIM does not use this feature. All our programs will be
contained in a single source file.)

1.10 Questions

A. What is a source file?
B. What is a register?
C. What character, in SPIM assembly language, starts a comment?
D. How many bits are there in each MIPS machine instruction?
E. When you open a source file from the File menu of SPIM, what two things happen?
F. What is the program counter?
G. Say that you push F10 to execute one instruction. What amount is added to the program

counter?
H. What is a directive, such as the directive .text?
I. What is a symbolic address?
J. Where was the first machine instruction placed in memory?
K. What machine instruction (bit pattern) did your first instruction (ori $8,$0,0x2) assemble

into?

Section 2. 2nd Program

2.1 Another Program

Type in the following program using Notepad and save it as lab12.asm

.data 0x10000000
msg1: .asciiz "Please enter an integer number: "

.text

.globl main
Inside main there are some calls (syscall) which will change the
value in $31 ($ra) which initially contains the return address
from main. This needs to be saved.
main: addu $s0, $ra, $0 # save $31 in $16

li $v0, 4 # system call for print_str
la $a0, msg1 # address of string to print
syscall

now get an integer from the user
li $v0, 5 # system call for read_int
syscall # the integer placed in $v0

do some computation here with the number
addu $t0, $v0, $0 # move the number in $t0
sll $t0, $t0, 2 # last digit of your SSN instead of 2

print the result
li $v0, 1 # system call for print_int
addu $a0, $t0, $0 # move number to print in $a0
syscall

restore now the return address in $ra and return from main
addu $ra, $0, $s0 # return address back in $31
jr $ra # return from main

Before you continue make sure you have entered the last digit of your SSN instead of 2 in the
instruction sll $t0, $t0, 2

2.2 Start SPIM

Start the SPIM simulator. Start > All Programs > PCSpim

2.3 Setup SPIM

Goto the Simulator > Setting dialog box. Make sure you set it up as shown

Figure 9 SPIM setup for Lab12.asm

2.4 Load Program

Load the lab12.asm. You can use the File > Open sequence or click on the File Open button. If
you make any mistake, check your program again.

2.5 Run Program

Run the program by pressing the F5 button or the Run button. You will be prompted to enter a
PC. It should show the value 0x00400000 which is the correct PC value. Just click OK to run the
program. The Console window should come to the foreground and it should display a message:

Please enter an integer number:

Type in an integer number and press Enter. The program will show a number as the result of a
calculation. To run the program again, press F5 again.

2.6 Do Some Experiment

You now try to figure out what program lab12.asm does. Run it several times with various input
data. Use both positive and negative integers. Fill out the following table:

Input Number Output Number

After you are done. Exit SPIM.

2.7 Figure out the relationship

What is the formula that describes the relation between the output and the input?

Section 3. Memory, Registers and Breakpoints

Using the simulator you will peek into the memory and into various general purpose registers.
You will also execute a program step by step. Stepping may be very useful for debugging. Setting
breakpoints in a program is another valuable debugging aide: you will be playing with these too.

3.1 Load Program

Start SPIM and load lab12.asm

3.2 Show Global symbols

Go to Simulator > Display Symbol Table. On the message window, you will see a listing of all
global symbols. Global symbols are those that are preceded by the assembler directive ‘.globl’.
For each symbol the address in memory where the labeled instruction is stored, is also printed.

Symbol Address

Exit Simulator.

3.3 Modify lab12.asm

Modify lab12.asm as follows: replace the first line after the line labeled ‘main’ with a line that
reads

label1: li $v0, 4 # system call for print_int

Save the program as lab13.asm. The only difference between the two programs is the label
‘label1’

3.4 Load lab13.asm

Start the SPIM simulator, load the program lab13.asm and print the list of global symbols.

Symbol Address

As you can see there is no difference between the listing you obtain at this step and the one at
Step 3.2. The reason is that ‘label1’ is a local symbol. Local symbols are visible only within the
module in which they are defined. A global symbol is visible inside and outside the module
where it is defined. A global symbol can therefore be referenced from other modules. Exit
Simulator.

3.5 Memory Content

We now know where the program is stored in memory. It is the address returned by Display
Symbol Table for the symbol ‘main’. To see what is stored in memory starting with that address,
look at the Text Display window (uses the vertical scroll bar). The window shows lines that
contains (in this order):
• the address in memory
• the hexadecimal representation of the instruction
• the native representation of instructions (no symbolic names for registers)
• the textual instruction as it appears in the source file

3.6 Program in the Memory

Starting with the address of the symbol ‘__start’ and fill the table below.

Label Address Native Instruction Source Instruction

3.7 Tracing a program

The Step (F10) command allows the user to execute a program step by step. The user can then
see how a specific instruction has modified registers, memory, etc. Use step to fill out the
following table

Label Address Native Instruction Source Instruction

Why does the table differ than step 3.6?

3.8 Reload lab12.asm

Load again lab12.asm. You will get an error message indicating that some label(s) have multiple
definitions. This happens because the program lab12.asm has already been loaded. If there is a
need to reload a program, then the way to do it is

Simulator > Reinitialize
then Load lab12.asm

Reinitialize will clear the memory and the registers.

3.9 Breakpoint

Let’s assume you don’t want to step through the program. Instead, you want to stop every time
right before some instruction is executed. This allows you to see what is in memory or in
registers right before the instruction is executed.

Set a breakpoint at the second syscall in your program (find the address from step 3.7). To set a
break point:

Simulator > Breakpoint or CTRL-B

A dialog box will open where you can add breakpoint addresses. Type the address in the address
box and click on the Add button. You can add more than one breakpoint and you can also delete
an existing breakpoint. When you are done click on the Close button.

Now you can run the program, up to the first breakpoint encountered (there is only one at this
time). Use the F5 button. When a breakpoint is reached, a dialog box will pop up and ask
whether you want to continue. Select No, because we want to stop execution and fill the ‘Before
the syscall’ column of the following table

Register
Number

Register Name Before Syscall After Syscall Change

0 zero

1 $at

2 $v0

3 $v1

4 $a0

5 $a1

6 $a2

7 $a3

8 $t0

9 $t1

10 $t2

11 $t3

12 $t4

13 $t5

14 $t6

15 $t7

16 $s0

17 $s1

18 $s2

19 $s3

20 $s4

21 $s5

22 $s6

23 $s7

24 $t8

25 $t9

26 $k0

27 $k1

28 $gp

29 $sp

30 $fp

31 $ra

3.10 Next

Press step (F10) to have the syscall executed. Before you can do anything else you must supply
an integer. This happens because the program executes a syscall, a call to a system function, in
this
case one that reads an integer from the keyboard. Fill out the ‘After the syscall’ column of the
above table. In the column ‘Changed’, mark with a star registers that have changed.

Some registers have changed during the syscall execution. Can you assume that syscall uses only
these registers? Explain.

