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﻿I/O System Design Issues 
 Performance 
 Expandability 
 Resilience in the face of failure 
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Motivation for Input/Output 
 I/O is how humans interact with computers 
 I/O lets computers do amazing things: 
 Read pressure, temperature, etc 
 Control propellers, motors, communicate 
 Read bar codes of items in refrigerator 

 Computer without I/O like a car without wheels; great 
technology, but won’t get you anywhere 



I/O Device Examples and Speeds 
 I/O Speed: bytes transferred per second (from mouse to 

display: million-to-1)  

Device Behavior Partner Data Rate 
(Kbytes/sec) 

Keyboard Input Human 0.01 

Mouse Input Human 0.02 

Line Printer Output Human 1 

Floppy disk Storage Machine 50 

Laser Printer Output Human 100 

Magnetic Disk Storage Machine 10000 

Network-LAN I or O Machine 10000 

Graphics Display Output Human 30000 



I/O System Performance 
 I/O System performance depends on many aspects of the 

system (“limited by weakest link in the chain”): 
 The CPU 
 The memory system: 

 Internal and external caches 
 Main Memory 

 The underlying interconnection (buses) 
 The I/O controller 
 The I/O device 
 The speed of the I/O software (Operating System) 
 The efficiency of the software’s use of the I/O devices 

 Two common performance metrics: 
 Throughput: I/O bandwidth 
 Response time: Latency 



Impact of I/O on System Performance 
 Suppose a benchmark executes in 100 seconds, where 90 

seconds is CPU time and the rest is I/O.  
 If CPU time improves by 50% per year for the next five 

years, but I/O time does not improve, how much faster 
will the program run at the end of five years.  

 Elapsed time = CPU time + I/O time  
    I/O time = 100 - 90 = 10 seconds 

After n Years CPU time 
(seconds) 

I/O time 
(seconds) 

Elapsed time 
(seconds) % I/O time 

0 90 10 100 0.1 

1 90/1.5 = 60 10 70 0.142857 

2 60/1.5 = 40 10 50 0.2 

3 40/1.5 = 27 10 37 0.27027 

4 27/1.5 = 18 10 28 0.357143 

5 18/1.5 = 12 10 22 0.454545 



I/O Architecture 
 Two methods are used to address the device: 
 Special I/O instructions 
 Memory-mapped I/O 

 Special I/O instructions specify: 
 Both the device number and the command word 
 Device number: the processor communicates this via a set of 

wires normally included as part of the I/O bus 
 Command word: this is usually send on the bus’s data lines 



I/O Architecture 
 Memory-mapped I/O: 
 Portions of the address space are assigned to I/O device 
 Read and writes to those addresses are interpreted s 

commands to the I/O devices 
 User programs are prevented from issuing I/O operations 

directly: 
 The I/O address space is protected by the address translation 



I/O Device Notifying the OS 
 The OS needs to know when: 
 The I/O device has completed an operation 
 The I/O operation has encountered an error 

 This can be accomplished in two different ways: 
 Polling: 

 The I/O device put information in a status register 
 The OS periodically check the status register 

 I/O Interrupt: 
 Whenever an I/O device needs attention from the processor, it 

interrupts the processor from what it is currently doing. 



Polling: Programmed I/O 

 Advantage:  
 Simple: the processor is totally in control and does all the work 

 Disadvantage: 
 Polling overhead can consume a lot of CPU time 

busy wait loop 
not an efficient 
way to use the CPU 
unless the device 
is very fast! 
but checks for I/O  
completion can be 
dispersed among 
computation  
intensive code 
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Cost of Polling? 
 Assume for a processor with a 1000-MHz clock it takes 

800 clock cycles for a polling operation (call polling 
routine, accessing the device, and returning). Determine 
% of processor time for polling 
 Mouse: polled 30 times/sec so as not to miss user movement 
 Floppy disk: transfers data in 2-byte units and has a data rate 

of 50 KB/second. No data transfer can be missed. 
 Hard disk: transfers data in 16-byte chunks and can transfer at 

8 MB/second. Again, no transfer can be missed. 



% Processor time to poll mouse, floppy 
 Mouse Polling Clocks/sec  
 = 30 * 800 = 24000 clocks/sec 
 % Processor for polling:  

 24*103/(1000*106) = 0.002% 
 Polling mouse little impact on processor 

 Times Polling Floppy/sec  
 = 50 KB/s /2B = 25K polls/sec 
 Floppy Polling Clocks/sec 

 = 25K * 800 = 20,000,000 clocks/sec 
 % Processor for polling:  

 20*106/(1000*106) = 2% 
 OK if not too many I/O devices 



% Processor time to hard disk 
 Times Polling Disk/sec 
 = 8 MB/s /16B = 500K polls/sec 

 Disk Polling Clocks/sec 
 = 500K * 800 = 400,000,000 clocks/sec 

 % Processor for polling:  
 400*106/1000*106 = 40% 

 Unacceptable  



Interrupt Driven Data Transfer 

 Advantage: 
 User program progress is only halted during actual transfer 

 Disadvantage,  special hardware is needed to: 
 Cause an interrupt (I/O device) 
 Detect an interrupt (processor) 
 Save the proper states to resume after the interrupt (processor) 
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I/O Interrupt 
 An I/O interrupt is just like the exceptions except: 
 An I/O interrupt is asynchronous 
 Further information needs to be conveyed 

 An I/O interrupt is asynchronous with respect to instruction 
execution: 
 I/O interrupt is not associated with any instruction 
 I/O interrupt does not prevent any instruction from completion 
 You can pick your own convenient point to take an interrupt 

 I/O interrupt is more complicated than exception: 
 Needs to convey the identity of the device generating the interrupt 
 Interrupt requests can have different urgencies: 
 Interrupt request needs to be prioritized 



Delegating I/O Responsibility from the CPU: DMA 
 Direct Memory Access (DMA): 
 External to the CPU 
 Act as a master on the bus 
 Transfer blocks of data to or 

from memory without CPU 
intervention 
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Delegating I/O Responsibility from the CPU: IOP 
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Responsibilities of the Operating System 
 The operating system acts as the interface between: 
 The I/O hardware and the program that requests I/O 

 Three characteristics of the I/O systems: 
 The I/O system is shared by multiple program using the 

processor 
 I/O systems often use interrupts (external generated 

exceptions) to communicate information about I/O operations. 
 Interrupts must be handled by the OS because they cause a transfer 

to supervisor mode 

 The low-level control of an I/O device is complex: 
 Managing a set of concurrent events 
 The requirements for correct device control are very detailed 



Operating System Requirements 
 Provide protection to shared I/O resources 
 Guarantees that a user’s program can only access the portions 

of an I/O device to which the user has rights 

 Provides abstraction for accessing devices: 
 Supply routines that handle low-level device operation 

 Handles the interrupts generated by I/O devices 
 Provide equitable access to the shared I/O resources 
 All user programs must have equal access to the I/O resources 

 Schedule accesses in order to enhance system throughput 



Bus 
 Shared communication link 
 Single set of wires used to connect multiple subsystems 
 A Bus is also a fundamental tool for composing large, 

complex systems 
 systematic means of abstraction 
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Example: Pentium System Organization 



Advantages of Buses 

 Versatility: 
 New devices can be added easily 
 Peripherals can be moved between computer systems that use the 

same bus standard 
 Low Cost: 
 A single set of wires is shared in multiple ways 

 Manage complexity by partitioning the design 

MemoryMemoryProcessorProcessor
I/O 

Device
I/O 

Device
I/O 

Device



Disadvantage of Buses 
 It creates a communication bottleneck 
 The bandwidth of that bus can limit the maximum I/O 

throughput 

 The maximum bus speed is largely limited by: 
 The length of the bus 
 The number of devices on the bus 
 The need to support a range of devices with: 

 Widely varying latencies  
 Widely varying data transfer rates 



The General Organization of a Bus 

 Control lines: 
 Signal requests and acknowledgments 
 Indicate what type of information is on the data lines 

 Data lines carry information between the source and the 
destination: 
 Data and Addresses 
 Complex commands 

Control 

Data 



Master versus Slave 

 A bus transaction includes two parts: 
 Issuing the command (and address)    – request 
 Transferring the data                        – action 

 Master is the one who starts the bus transaction by: 
 issuing the  command (and address) 

 Slave is the one who responds to the address by: 
 Sending data to the master if the master ask for data 
 Receiving data from the master if the master wants to send 

data 
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Types of Buses 
 Processor-Memory Bus (design specific) 
 Short and high speed 
 Only need to match the memory system 
 Maximize memory-to-processor bandwidth 
 Connects directly to the processor 
 Optimized for cache block transfers 

 I/O Bus (industry standard) 
 Usually is lengthy and slower 
 Need to match a wide range of I/O devices 
 Connects to the processor-memory bus or backplane bus 



Types of Buses 
 Backplane Bus (standard or proprietary) 
 Backplane: an interconnection structure within the chassis 
 Allow processors, memory, and I/O devices to coexist 
 Cost advantage: one bus for all components 



A Computer System with One Bus: Backplane Bus 

 A single bus (the backplane bus) is used for: 
 Processor to memory communication 
 Communication between I/O devices and memory 

 Advantages: Simple and low cost 
 Disadvantages: slow and the bus can become a major 

bottleneck 
 Example: IBM PC - AT 
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A Two-Bus System 

 I/O buses tap into the processor-memory bus via bus 
adaptors: 
 Processor-memory bus: mainly for processor-memory traffic 
 I/O buses: provide expansion slots for I/O devices 

 Apple Macintosh-II 
 NuBus: Processor, memory, and a few selected I/O devices 
 SCCI Bus: the rest of the I/O devices 
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A Three-Bus System 

 A small number of backplane buses tap into the processor- 
memory bus 
 Processor-memory bus is used for processor memory traffic 
 I/O buses are connected to the backplane bus 

 Advantage: loading on the processor bus is greatly reduced 
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Synchronous and Asynchronous Bus 
 Synchronous Bus: 
 Includes a  clock in the control lines 
 A fixed protocol for communication that is relative to the clock 
 Advantage: involves very little logic and can run very fast 
 Disadvantages: 

 Every device on the bus must run at the same clock rate 
 To avoid clock skew, they cannot be long if they are fast 

 Asynchronous Bus: 
 It is not clocked 
 It can accommodate a wide range of devices 
 It can be lengthened without worrying about clock skew 
 It requires a handshaking protocol 



Simple Synchronous Protocol 

 Even memory busses are more complex than this 
 memory (slave) may take time to respond 
 need to control data rate 
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Typical Synchronous Protocol 

 Slave indicates when it is prepared for data transfer 
 Actual transfer goes at bus rate 
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Asynchronous Handshake 

 t0 :  Master has obtained control and asserts address, direction, data 
 Waits a specified amount of time for slaves to decode target 

 t1:   Master asserts request line 
 t2:   Slave asserts ack, indicating data received 
 t3:   Master releases req 
 t4:   Slave releases ack 

Address
Data
Read
Req
Ack

Master Asserts Address

Master Asserts Data

Next Address

Write Transaction

t0      t1       t2                 t3     t4    t5



Read Transaction 

 t0 :  Master has obtained control and asserts address, direction, data 
 Waits a specified amount of time for slaves to decode target\ 

 t1:   Master asserts request line 
 t2:   Slave asserts ack, indicating ready to transmit data 
 t3:   Master releases req, data received 
 t4:   Slave releases ack 

Address
Data
Read
Req
Ack

Master Asserts Address Next Address

t0      t1       t2                 t3     t4    t5



Busses so far 

 Bus Master:  has ability to control the bus, initiates transaction 
 Bus Slave:  module activated by the transaction 
 Bus Communication Protocol:  specification of sequence of 

events and timing requirements in transferring information. 
 Asynchronous Bus Transfers:  control lines (req, ack) serve to 

orchestrate sequencing. 
 Synchronous Bus Transfers:  sequence relative to common 

clock 

  Master Slave

Control Lines
Address Lines
Data Lines



Arbitration: Obtaining Access to the Bus 

 One of the most important issues in bus design: 
 How is the bus reserved by a devices that wishes to use it? 

 Chaos is avoided by a master-slave arrangement: 
 Only the bus master can control access to the bus: 

 It initiates and controls all bus requests 
 A slave responds to read and write requests 

 The simplest system: 
 Processor is the only bus master 
 All bus requests must be controlled by the processor 
 Major drawback: the processor  is involved in every transaction 
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Multiple Potential Bus Masters: the Need for 
Arbitration 
 Bus arbitration scheme: 
 A bus master  wanting  to use the bus asserts the bus request 
 A bus master cannot use the bus until its request is granted 
 A bus master must signal to the arbiter after finish using the 

bus 

 Bus arbitration schemes usually try to balance two 
factors: 
 Bus priority: the highest priority device should be serviced first 
 Fairness: Even the lowest priority device should never 

 be completely locked out from the bus 



Multiple Potential Bus Masters: the Need for 
Arbitration 
 Bus arbitration schemes can be divided into four broad 

classes: 
 Daisy chain arbitration: single device with all request lines. 
 Centralized, parallel arbitration: see next-next slide 
 Distributed arbitration by self-selection: each device wanting 

the bus places a code indicating its identity on the bus. 
 Distributed arbitration by collision detection: Ethernet uses 

this. 



The Daisy Chain Bus Arbitration Scheme 

 Advantage: simple 
 Disadvantages: 
 Cannot assure fairness: 

 A low-priority device may be locked out indefinitely 

 The use of the daisy chain grant signal also limits the bus speed 
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Centralized Parallel Arbitration 

 Used in essentially all processor-memory busses and in 
high-speed I/O busses 
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Increasing the Bus Bandwidth 
 Separate versus multiplexed address and data lines: 
 Address and data can be transmitted in one bus cycle if 

separate address and data lines are available 
 Cost: (a) more bus lines, (b) increased complexity 

 Data bus width: 
 By increasing the width of the data bus, transfers of multiple 

words require fewer bus cycles 
 Example: SPARCstation 20’s memory bus is 128 bit wide 
 Cost: more bus lines 



Increasing the Bus Bandwidth 
 Block transfers: 
 Allow the bus to transfer multiple words in back-to- back bus 

cycles 
 Only one address needs to be sent at the beginning 
 The bus is not released until the last word is transferred 
 Cost: (a) increased complexity 
      (b) decreased response time for request 
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