The Processor Data Path and
Control

Chapter 4
Single Cycle



The Big Picture: The Performance
Perspective

= Performance of a machine is determined by:
> Instruction count
> Clock cycle time
> Clock cycles per instruction

= Processor design (datapath and control) will determine:
> Clock cycle time

> Clock cycles per instruction
= Today:
> Single cycle processor:

- Advantage: One clock cycle per instruction
- Disadvantage: long cycle time



Introduction

= Building blocks of the processor

= Tmplementation of a subset
» Load & store word
> Arithmetic & logic instructions (add, sub, and, or, slt)
> Branch equal & jump

= Logic and clocking

» Edge triggered

> New value at the rising edge of the clock
> Period determined by the longest module

Registers: automatically updated, except those with
an explicit write signal



The abstract view

= Program counter: next instruction

= Instruction memory
= Register file

Data memory

Bus structure: information transfer
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Building the data path

= Instruction memory
> Contains only instructions

= Program counter
> points to the next instruction

= Arithmetic & logic unit
> Here: an adder only
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Instructions & PC

= Increment: add 4 to the PC to get to the address of the
nhext instruction

= Needs extension for Branch and Jump
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Registers and ALU

= Register file for R-format instructions as discussed

previously
= ALU as designed in the previous chapter
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Adding the data memory

= Transfer address to the memory
= Transfer data to the register file
= Signh extension unit for address calculation
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Branch data path

= PC + 4 + sign extended & shifted address

PC + 4 from instruction datapath _»\
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Putting things together

= Register set
= ALU for operand and address calculation

= Data memory
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Adding the instruction fetch unit

= The instruction fetch unit provides the instruction
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Adding branch logic

= Supports now all basic instructions
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Basic control

= Review of ALU functions / control lines

= ALU control bits: origin of
» 00: Addition (load & store word)
> 01: Subtraction (branch on equal)

> 10 : Operations according the value in the function
field (R-type instructions)

ALU Control lines Function
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ALU control

Instruction Instruction Desired ALU control
opcode operation ALU action input

| load word XXXXXX

SW 00 store word KHKXKX add 010

Branch equal | 01 |branch equal | XXXXXX ' subtract | 110
‘Rtype | 10 | add ' 100000 " add ' 010
'Retype 10 |subtract | 100010 | subtract | 110
R-type " 10 |AND | 100100 " and | 000
Ritype 10 |OR | 100101 Lor | 001
- R-type ‘ 10 | set on less than | 101010 ‘ set on less than | 111
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Main control

= Source information: instruction

= Operation code: Op [31-26]

= Read registers: rs [25-21], rt [20-16]
= Base register (LW, SW): rs [25-21]

= Destination register
» Load: rt [20-16]
> R-type: rd [15-11]
> Requires a multiplexor



Extended data path

= Multiplexors for write register select
= All control lines
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Summary of control lines

RegDest

> Source of the destination register for the operation
RegWrite

> Enables writing a register in the register file

ALUsrc

> Source of second ALU operand, can be a register or
part of the instruction

PCsrc
» Source of the PC (increment [PC + 4] or branch)

MemRead / MemWrite
> Reading / Writing from memory

MemtoReg
> Source of write register contents



Data path & control
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Operation of data path

= Example flow: R-type instruction
> Instruction fetch and PC increment
> Reading of the registers
> Processing of the data in the ALU
> Writing the result to the register file
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Example flow: R-type instruction
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R-type flow phase 2
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R-type flow phase 3
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R-type flow phase 4
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Example flow: load word

= lw $3, offset ($2)
> Fetch instruction from memory, increment PC
> Read register value from register $2
> Compute the final address
> Use address for for addressing the memory
> Write the data into the register file

= beq $10, $11, of fset
> Fetch instruction form memory, increment PC
> Read the two register values ($10, $11)

» Subtract the values, calculate the branch target
address

» Use the zero signal to determine the target



Finalizing the control

= Decimal op code
= Binary op code
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Control function

= Choose the right implementation

R-format

Op5 0 1 1 0

Op4 0 0 0 0

— Op3 0 0 1 0
Op2 0 0 0 1

Op1l 0 1 1 0

Op0 0 1 1 0

RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1




Implementation as PLA

= Custom logic

> PLA

> ROM
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Jump instruction

= Extension of the previous architecture
= Jump address

= Lower 2 bits always O

= Immediate field: bits 2-27

= Current PC: bits 28-31
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Data path supporting jump
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Limitation of single cycle approach

= Access times for various operations vary
> Memory access: 10 ns
> Register access: 2 ns
> Add: 3 ns
> Sub: 3.5 ns
> Multiplication: 20 ns
> FP multiplication: 24 ns
> Transcendent functions: 40 ns

= Time depends on implementation
= The slowest module defines the cycle duration



Example

List of actions per instruction
Number of cycles / instruction

Faster MIPS
Take a benchmark and the probability of instructions

Instruction |Instruction Register ALU Data Register | Total
type memory read operation memory write

R-Format op, 8 2 4 0 2 16
Load word 2 4 8 2 24
Store word 8 2 4 8 0 22
Branch 8 2 4 0 0 14
Jump 8 0 0 0 0 8




Example

= Probabilities
» R-format 49% 16ns
» Load word 22% 24ns
» Store word 11% 22ns
» Branch 16% 14ns
> Jump 2% 8ns

= Average CPU clock cycle time for this benchmark: 18 ns

= Clock cycle time by slowest block: 24 ns (ignoring really
long operations)



