The Processor Data Path and
Control

Chapter 4
Single Cycle

The Big Picture: The Performance
Perspective

= Performance of a machine is determined by:
> Instruction count
> Clock cycle time
> Clock cycles per instruction

= Processor design (datapath and control) will determine:
> Clock cycle time

> Clock cycles per instruction
= Today:
> Single cycle processor:

- Advantage: One clock cycle per instruction
- Disadvantage: long cycle time

Introduction

= Building blocks of the processor

= Tmplementation of a subset
» Load & store word
> Arithmetic & logic instructions (add, sub, and, or, slt)
> Branch equal & jump

= Logic and clocking

» Edge triggered

> New value at the rising edge of the clock
> Period determined by the longest module

Registers: automatically updated, except those with
an explicit write signal

The abstract view

= Program counter: next instruction

= Instruction memory
= Register file

Data memory

Bus structure: information transfer

PC

f—

Address

Instruction
memory

Instruction 1

B

Data
Register #
Registers

Register #

Register #

>ALU

Address

Data
memory

»| Data

Building the data path

= Instruction memory
> Contains only instructions

= Program counter
> points to the next instruction

= Arithmetic & logic unit
> Here: an adder only

| Instruction
address
—— PC1~
INStruction fe——y
Instruction
memory
a. Instruction memory b. Program counter

c. Adder

Instructions & PC

= Increment: add 4 to the PC to get to the address of the
nhext instruction

= Needs extension for Branch and Jump

>Add

4“

Read
address

Instruction >

Instruction
memory

Registers and ALU

= Register file for R-format instructions as discussed

previously
= ALU as designed in the previous chapter

Instruction

Read

register 1 Read
Read data 1
register 2

Registers

Write

register Read
Write data 2
data

—

RegWrite

ALU operation

3
Zero
result

Adding the data memory

= Transfer address to the memory
= Transfer data to the register file
= Signh extension unit for address calculation

Instruction

extend

3 ALU operation
Read
register 1 Read ,
Read data 1
register 2 Zero—>
_ Registers ALU AU
W”,tet result
register Read R
Write data 2
| data
RegWrite
16 _ 32
\ | Sign
—

‘ MemWrite
_ Read
»| Address data
Data
) memory
| Write
data
MemRead

Branch data path

= PC + 4 + sign extended & shifted address

PC + 4 from instruction datapath _»\

>Add Sum » Branch target

ALU operation
Read
Instruction register 1 Read :
Read data 1
register 2
Registers 5ALU Zero To branch_
Write control logic
register Read .
Write data 2
data
RegWrite
16) 32
A\ | Sign |\

N\ “lextend| M

Putting things together

= Register set
= ALU for operand and address calculation

= Data memory

Read

register 1 Read
Re -."_I'C| data 1
Instruction register 2

Registers peag

ALU plu

=c=

register data
Write
: Data
— memory
16 _
extend

Adding the instruction fetch unit

= The instruction fetch unit provides the instruction

»

>Add

4 cmp

»|PC

Read
address

Instruction

Instruction
memory

Read
register 1

Read
register 2
Write
register

Write

“|data

Registers

Read

data 1
Read

1
\

data 2 ‘

xc<Z

> extend

Address Read
data

Data

| Write mMemory
data

xc

Adding branch logic

= Supports now all basic instructions

gAdd

4 cmp

= PC

Read
address

Instruction

Instruction
memory

3] ALU operation

Registers
Read
register 1 Read
Read data 1
register 2
Write Read
register data 2
Write
> data
RegWritel
1\6‘ Sign

xc

MemWrite

Read

Address
data

Data

Write Memory

v

32

data

MemtoReg

|

xcZ

MemRead

Basic control

= Review of ALU functions / control lines

= ALU control bits: origin of
» 00: Addition (load & store word)
> 01: Subtraction (branch on equal)

> 10 : Operations according the value in the function
field (R-type instructions)

ALU Control lines Function

000 And

001 Or

010 Add

110 Subtract
131 Set-on-less-than

ALU control

Instruction Instruction Desired ALU control
opcode operation ALU action input

| load word XXXXXX

SW 00 store word KHKXKX add 010

Branch equal | 01 |branch equal | XXXXXX ' subtract | 110
‘Rtype | 10 | add ' 100000 " add ' 010
'Retype 10 |subtract | 100010 | subtract | 110
R-type " 10 |AND | 100100 " and | 000
Ritype 10 |OR | 100101 Lor | 001
- R-type ‘ 10 | set on less than | 101010 ‘ set on less than | 111

R B BB i
AT L P L L LRI N e

010
110
010

X
0
0
0 000
1
0

I—‘-I'—‘I-—"I-—‘I-—‘:x|CJ
| > |>|>x|>x|x|~|O
> | | x| x| x| x
| €| 2| | | >
rlolololo| x| x
olr|r|lolo|x|x
Rlololr|lolx x

Main control

= Source information: instruction

= Operation code: Op [31-26]

= Read registers: rs [25-21], rt [20-16]
= Base register (LW, SW): rs [25-21]

= Destination register
» Load: rt [20-16]
> R-type: rd [15-11]
> Requires a multiplexor

Extended data path

= Multiplexors for write register select
= All control lines

=y

Read
address

Instruction {

Instruction
memory

M| extend

Registers :
Read ’ e | (A ERER MemWrite
i ALUSrc
register 1 Read | ‘
Read data 1 i MemtoReg
register 2
Write Read a Address Read N
register data2 | 1 ! I\d' data M
— \é\gti;e X Data X
_ | Write memory
Regertel data
1\6‘ Sign 32
MemRead

Summary of control lines

RegDest

> Source of the destination register for the operation
RegWrite

> Enables writing a register in the register file

ALUsrc

> Source of second ALU operand, can be a register or
part of the instruction

PCsrc
» Source of the PC (increment [PC + 4] or branch)

MemRead / MemWrite
> Reading / Writing from memory

MemtoReg
> Source of write register contents

Data path & control

PC

N

>>Add

Instruction [31 -26]

4 —
Read
| address
Instruction
[31-0]
Instruction
memory

Instruction [25 -21]

Control

RegDst
Branch

\ MemRead

I—'xczo

PCSrc

MemtoReg

ALUOp

MemWrite

/ ALUSIc

RegWrite

Read

Instruction [20 -16]

register 1

Read

Read data 1

|

Instruction [15 -11]

"| register 2
Registers Read

Write data 2
register

Write

P xecz©

Instruction [15 0]

data

16)
\ Sign

HXCzo‘\

Zero
ALU aAlu
result

\ “lextend

Instruction [5-0]

Address

Write
data

Read
data

Data
memory

OXCZH

Operation of data path

= Example flow: R-type instruction
> Instruction fetch and PC increment
> Reading of the registers
> Processing of the data in the ALU
> Writing the result to the register file

Memto- Reg Mem
RegDst neg Write | Read ALIJOpl ALUOpO
0 1 1 [1 0

chrmat
0
X 0 ! 0 0 _T_T{
I [[
I l

| X | 0 0 1

e ——————————————{—

X
. beq X

DHHD
=20 =] -
IR =lE=] =

o

Example flow: R-type instruction

O T

Shift Jump address [31-0]
Instruction[25-0] Left /TN
2 | 0 1
I_ PC+4[31-28] I\J I\J
X X
Vg —
4 Add ALU ALU 1 0
Result
RegDst
Jump
\ Branch
\ MemRead
Instruction[31-26] Cﬁrl;tLrjol l MemioRey
f ALUOp
/ MemWrite A
/ ALU Src N
RegWrite
) Read Read
Read t————————— INStruction[25-2 1] =—————f- :) —V]
> P Register 1 Register 1
5 Zero
Instruction) Read Read
9 - 16] e~ V]
[31-0] Instructign[20-16] Register 2 Register 2 0 (A ALU Address Read 1
Register M Result Data
Instruction Write u M
Memory Register X U
X
—P Write !) Mgrilgry 0
Data 1 Write
Instruction[15-11] = BEE
16 32
Instruction[15-0] N AL
I\
Control
Instruction[5-0]

R-type flow phase 2

O*'U

Instruction[15-0]

Instruction[5-0]

Shift Jump address [31-0]
Instruction[25-0] | Left /M
2 J | (1
— PC+4[31-28] —] “6'
X
Vg) —
4 Add ALU ALU 0
. Result
RegDst
Jump
\ Branch
MemRead
Instruction[31-26]—- CﬁhtLrJol MemioReg
ALUOp
/ MemWrite
/ ALU Src A
RegWrite
. Read Read
Read ——————— Instruction[25-21]———») : (]
—> . Register 1 Register 1
. Zero
Instruction . Read Read
[31-0] Instruction[20-16] > Register 2 Register 2 > AU AU Address Read 1
Register Result Data
Instruction Write M
Memory 0 > Register u
M X
U . Write Memory
X Data Write 0
Instruction[15-11] 1 T
16 32

R-type flow phase 3

(@Nv)

Add

Shift
Instruction[25-0] | Left
: J

Jump address [31-0]

PC+4[31-28]

. Read
Address
Instruction

[31-0]

Instruction
Memory

——————— Instruction[25-21]———»

RegDst |

Jump

Branch

ALU ALU

Result

MemRead

O xczg

Instruction[31-26]—- cﬁhtLrJol

MemtoReg

ALUOp

MemWrite

ALU Src

RegWrite

Instruction[20-16]———»

-

Read
Register 1

Read
Register 2

Register

Write
Register

Write
Data

Read r

Register 1

Read
Register 2

ALU

Zero

ALU
Result

0
M
U >
X
1

Instruction[15-11]

Instruction[15-0]

Instruction[5-0]

Read

Address Data

Memory
Write
Data

O xcg

R-type flow phase 4

(@Nv)

Add

Shift
Instruction[25-0] | Left
: J

Jump address [31-0]

PC+4[31-28]

. Read
Address
Instruction

[31-0]

Instruction
Memory

——————— Instruction[25-21]———»

RegDst |

Jump

Branch

ALU ALU

Result

MemRead

O xczg

Instruction[31-26]—- cﬁhtLrJol

MemtoReg

ALUOp

MemWrite

/

ALU Src

RegWrite

Instruction[20-16]———»

-

Read
Register 1

Read
Register 2

Register

Write
Register

Write
Data

Read r

Register 1

Read
Register 2

ALU

Zero

ALU
Result

0
M
u >
X
1

Instruction[15-11]

Instruction[15-0]

Instruction[5-0]

Read

Address Data

Memory
Write
Data

O xcg +

Example flow: load word

= lw $3, offset ($2)
> Fetch instruction from memory, increment PC
> Read register value from register $2
> Compute the final address
> Use address for for addressing the memory
> Write the data into the register file

= beq $10, $11, of fset
> Fetch instruction form memory, increment PC
> Read the two register values ($10, $11)

» Subtract the values, calculate the branch target
address

» Use the zero signal to determine the target

Finalizing the control

= Decimal op code
= Binary op code

opoode in
e mmmmm

“Rformat O |20 Fi0 0 0 0 0
TR e A P 0 0 0 Wi T

S | & 1 o | 1 | 0 T R
beq | Aren | 0 0 0 L0l e

Control function

= Choose the right implementation

R-format

Op5 0 1 1 0

Op4 0 0 0 0

— Op3 0 0 1 0
Op2 0 0 0 1

Op1l 0 1 1 0

Op0 0 1 1 0

RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1

Implementation as PLA

= Custom logic

> PLA

> ROM

» LN)

I

U .
D—
] >—

I?Fg[ht
ALUSIc
MemtoReg
Regwrile
MemRead
MemWnie
granch
ALUCp1

ALLOpO

Jump instruction

= Extension of the previous architecture
= Jump address

= Lower 2 bits always O

= Immediate field: bits 2-27

= Current PC: bits 28-31

Instruction

op address
2 80000
Address

PC jump address field

Data path supporting jump

N

Instruction [25-0] \ ®\

Jump address [31-0]

\ \
26 er

PC+4 [31-28]

>Add

R
| Read
address
Instruction
[31-0]
Instruction
memory

Jump
Instruction [31-26]
Control
Instruction [25—21] Read
register 1 Read
Instruction [20—16] Read data 1
I register 2
0 ~ Registers Read
M Write data 2
u register
Instruction [15—11] X Write
1 data
Instruction [15-0] 1\6 Sign
\ Tlextend

Instruction [5-0]

32

0 L=
M M
w u u
X X
ALU
Add result '\l/ >0
ALU ALu
0 '\ N Read|
M result Address data
u
X Data
1 . memory
Write
"| data

OXCZH

Limitation of single cycle approach

= Access times for various operations vary
> Memory access: 10 ns
> Register access: 2 ns
> Add: 3 ns
> Sub: 3.5 ns
> Multiplication: 20 ns
> FP multiplication: 24 ns
> Transcendent functions: 40 ns

= Time depends on implementation
= The slowest module defines the cycle duration

Example

List of actions per instruction
Number of cycles / instruction

Faster MIPS
Take a benchmark and the probability of instructions

Instruction |Instruction Register ALU Data Register | Total
type memory read operation memory write

R-Format op, 8 2 4 0 2 16
Load word 2 4 8 2 24
Store word 8 2 4 8 0 22
Branch 8 2 4 0 0 14
Jump 8 0 0 0 0 8

Example

= Probabilities
» R-format 49% 16ns
» Load word 22% 24ns
» Store word 11% 22ns
» Branch 16% 14ns
> Jump 2% 8ns

= Average CPU clock cycle time for this benchmark: 18 ns

= Clock cycle time by slowest block: 24 ns (ignoring really
long operations)

