
Pipeline 

Chapter 4 



Reminder 



Data Hazard and Forwarding 
 Interesting instruction sequence 
       SUB $2, $1, $3 
       AND $12, $2, $5 
       OR $13, $6, $2 
       ADD $14, $2, $2 
       SW $15, 100 ($2) 
 Last four instructions depend on $2 
 Availability of new value after 5th cycle 



Usage of the first result 



Solution 1 
 Solution on compiler level 
 Forbid code sequences as given in example 
 Insert nop operations 
 Result 
       SUB $2, $1, $3 
       NOP 
       NOP 
       AND $12, $2, $5 
       OR $13, $6, $2 
       ADD $14, $2, $2 
       SW $15, 100 ($2) 



Solution 2 
 Detection of hazard 
 Forwarding of the result 
 Hazard types 
       1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 
       1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 
       2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 
       2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 
 Pipeline register name.register field 



Hazards 
 First hazard 
      SUB $2, $1, $3 
      AND $12, $2, $5 
 Detectable: 
 And in EX stage and 
 Prior instruction in MEM stage 
 Hazard 1a 
 EX/MEM.Register.Rd = ID/EX.RegisterRs = $2 



Dependencies 



Detection conditions 
 EX hazard 
 If (EX/MEM.RegWrite  
    and (EX/MEM.RegisterRd <> 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
          ForwardA = 10 
 If (EX/MEM.RegWrite 
    and (EX/MEM.RegisterRd <> 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
          ForwardB = 10 



Detection conditions 
 MEM hazard 
 If (MEM/WB.RegWrite 
 and (MEM/WB.RegisterRd <> 0) 
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 
 If (MEM/WB.RegWrite 
 and (MEM/WB.RegisterRd <> 0) 
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 



ALU without forwarding 
 



ALU without forwarding 
 



Datapath with forwarding 



Example with forwarding 
 Instructions with double dependency 
  sub $2, $1, $3 
  and $4, $2, $5 
  or $4, $4, $2 
  add $9, $4, $2 
 Instructions in execution cycle 
 Cycle 3: sub 
 Cycle 4: and 
 Cycle 5: or 
 Cycle 5: add 



Example with forwarding 
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Example with forwarding 
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Example with forwarding 
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Summary 
 Pipelining 
 Data 
 Control signals 
 Register references 

 Forwarding 
 Detect a hazard 
 Assemble the operands from 

 Register 
 EX/MEM register 
 MEM/WB register 



Data hazard and stalls 
 Avoiding of hazards 
 Code reordering 
 Forwarding 

 One problem is left over 
  lw $5, 100 ($4) 
  add $6, $7, $5 
 lw writes not before cycle 5 -> data hazard! 
 The hazard has to be detected and the pipeline to be stalled. 



Pipeline with problem 



Data hazard 
 Conditions for the hazard detection 
  If (ID/EX.MemRead and 
      ((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
      ((ID/EX.RegisterRt = IF/ID.RegisterRt))) 
   stall the pipeline 
 Check for load instruction 
 Check if the register to be loaded is part of the current 

instruction 
 If it is, stall the pipeline 



Implementation of a stall 
 For one cycle (set all control signal to zero) 
 Stop update of PC 
 Freeze IF/ID pipeline register 



Datapath with stall 



Example with stall 
 Code sequence 
  lw $2, 20($1) 
  and $4, $2, $5 
  or $8, $2, $6 
  add $9, $4, $2 
  slt $1, $6, $7 



Example with stall 
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Example with stall 
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Example with stall 
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Example with stall 
Hazard

detection
unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

2

       

 

bubble lw $2, . . .

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

EX/MEM

MEM/WB

add $9, $4, $2

Clock 5

2

2
10 10

11

$4

$2

2
4

4

4

2

4

$2

$5

5
2

4

Control

ALU

0

WB

ID/EX.MemRead

   

or $4, $4, $2



Example with stall 
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Example with stall 
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Branch hazards 
Current design: 
 Decision occurs in MEM stage 
 Branch not taken 
 Continuously fetch instructions 
 Simply continue 

 Branch taken 
 Continuously fetch instructions 
 On decision: discard three instructions 
 Set controls to '0' 
 Clear instructions in IF, ID and EX stage 
 No register changed because no instruction has reached the 

write back stage 



Branch hazard 
 Continuation of the program @ 72 



Reduction of branch costs 
 Move branch decision to an earlier stage 
 Select branch address at 
 End of EX stage -> two cycle penalty 
 End of ID stage -> one cycle penalty 

 Move the branch address adder to ID stage 
 Branch detection in ID stage 
 Exclusive-or of the bits 
 AND of the results 

 Clear instruction field in IF/ID pipeline -> creates a NOP 



Data path with branch 
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Example 
 Branch is taken 
  36  sub $10 $4, $8 
  40  beq $1, $3, 7           ;40 + 4 + 7*4 = 72 
  44  and $12 $2, $5 
  48  or $13 $2, $6 
  52  add $14 $4, $2 
  56 slt $15 $6, $7 
  ..  . . 
  72  lw $4, 50(7) 



Example 



Example 



Delayed branch 
 If the branch hardware has been moved to the ID stage, then 

we can eliminate all branch stalls with delayed branches which 
are defined as always executing the next sequential instruction 
after the branch instruction – the branch takes effect after that 
next instruction 
 MIPS compiler moves an instruction to immediately after the branch 

that is not affected by the branch (a safe instruction) thereby hiding 
the branch delay 

 With deeper pipelines, the branch delay grows requiring more 
than one delay slot 
 Delayed branches have lost popularity compared to more expensive 

but more flexible (dynamic) hardware branch prediction  
 Growth in available transistors has made hardware branch prediction 

relatively cheaper 
 



Scheduling Branch Delay Slots 

 A is the best choice, fills delay slot and reduces IC 
 In B and C, the sub instruction may need to be copied, increasing IC 
 In B and C, must be okay to execute sub when branch fails 

add  $1,$2,$3 
if $2=0 then 

delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 

delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 
  
if $2=0 then 

add  $1,$2,$3 
add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 

sub $4,$5,$6 



Static Branch Prediction 
 Resolve branch hazards by assuming a given outcome and 

proceeding without waiting to see the actual branch outcome 
1. Predict not taken – always predict branches will not be taken, 

continue to fetch from the sequential instruction stream, only 
when branch is taken does the pipeline stall 
 If taken, flush instructions after the branch (earlier in the pipeline) 

 in IF, ID, and EX stages if branch logic in MEM – three stalls 
 In IF and ID stages if branch logic in EX – two stalls 
 in IF stage if branch logic in ID – one stall 

 ensure that those flushed instructions haven’t changed the 
machine state – automatic in the MIPS pipeline since machine state 
changing operations are at the tail end of the pipeline (MemWrite 
(in MEM) or RegWrite (in WB))  

 restart the pipeline at the branch destination 



flush 

Flushing with Misprediction (Not Taken) 

4 beq $1,$2,2 I 
n 
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t 
r. 
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r 

ALU
 IM Reg DM Reg 

16 and $6,$1,$7 

20 or  r8,$1,$9 

ALU
 IM Reg DM Reg 

ALU
 IM Reg DM Reg 

ALU
 IM Reg DM Reg 8 sub $4,$1,$5 

 To flush the IF stage instruction, assert IF.Flush to zero 
the instruction field of the IF/ID pipeline register 
(transforming it into a noop) 



Branching Structures 
 Predict not taken works well for 

“top of the loop” branching 
structures 
 But such loops have jumps at the 

bottom of the loop to return to the 
top of the loop – and incur the 
jump stall overhead 

 
 Predict not taken doesn’t work 

well for “bottom of the loop” 
branching structures 

Loop: beq $1,$2,Out 
      1nd loop instr 
           . 
           . 
           . 
      last loop instr 
      j  Loop 
Out:  fall out instr 

Loop: 1st loop instr 
      2nd loop instr 
           . 
           . 
           . 
      last loop instr 
      bne $1,$2,Loop 
      fall out instr 



Static Branch Prediction, con’t 
 Resolve branch hazards by assuming a given outcome and 

proceeding 
 Predict taken – predict branches will always be taken 

 Predict taken always incurs one stall cycle (if branch destination 
hardware has been moved to the ID stage) 

 Is there a way to “cache” the address of the branch target instruction 
?? 

 As the branch penalty increases (for deeper pipelines), a 
simple static prediction scheme will hurt performance.  
With more hardware, it is possible to try to predict 
branch behavior dynamically during program execution 
 Dynamic branch prediction – predict branches at run-time 

using run-time information 
 

 



Dynamic Branch Prediction 
 A branch prediction buffer (aka branch history table (BHT)) in 

the IF stage addressed by the lower bits of the PC, contains 
bit(s) passed to the ID stage through the IF/ID pipeline register 
that tells whether the branch was taken the last time it was 
execute 
 Prediction bit may predict incorrectly (may be a wrong prediction for 

this branch this iteration or may be from a different branch with the 
same low order PC bits) but the doesn’t affect correctness, just 
performance 
 Branch decision occurs in the ID stage after determining that the fetched 

instruction is a branch and checking the prediction bit(s) 
 If the prediction is wrong, flush the incorrect instruction(s) in 

pipeline, restart the pipeline with the right instruction, and invert the 
prediction bit(s) 
 A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv) to 18% 

(eqntott) 



Branch Target Buffer 
 The BHT predicts when a branch is taken, but does not tell 

where its taken to! 
 A branch target buffer (BTB) in the IF stage caches the branch target 

address, but we also need to fetch the next sequential instruction.  
The prediction bit in IF/ID selects which “next” instruction will be 
loaded into IF/ID at the next clock edge 
 Would need a two read port  
 instruction memory 

 If the prediction is correct, stalls can be avoided no matter which 
direction they go 

 Or the BTB can cache the                                                                        
branch taken instruction while the 
instruction memory is fetching the next 
sequential instruction 

Read 
Address 

Instruction 
Memory 

PC
 0 

BTB 



1-bit Prediction Accuracy 
 A 1-bit predictor will be incorrect twice when not taken 

 For 10 times through the loop we have a 80% prediction 
accuracy for a branch that is taken 90% of the time 

 Assume predict_bit = 0 to start (indicating 
branch not taken) and loop control is at the 
bottom of the loop code 

1. First time through the loop, the predictor 
mispredicts the branch since the branch is 
taken back to the top of the loop; invert 
prediction bit (predict_bit = 1) 

2. As long as branch is taken (looping), 
prediction is correct 

3. Exiting the loop, the predictor again 
mispredicts the branch since this time the 
branch is not taken falling out of the loop; 
invert prediction bit (predict_bit = 0) 

Loop: 1st loop instr 
      2nd loop instr 
           . 
           . 
           . 
      last loop instr 
      bne $1,$2,Loop 
      fall out instr 



2-bit Predictors 
 A 2-bit scheme can give 90% accuracy since a prediction must 

be wrong twice before the prediction bit is changed 

Predict 
Taken 

Predict 
Not Taken 

Predict 
Taken 

Predict 
Not Taken 

Taken 
Not taken 

Not taken 

Not taken 

Not taken 

Taken 
Taken 

Taken 

Loop: 1st loop instr 
      2nd loop instr 
           . 
           . 
           . 
      last loop instr 
      bne $1,$2,Loop 
      fall out instr 

wrong on loop 
fall out 

0 

1 1 

right 9 times 

right on 1st 
iteration 
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 BHT also 

stores the 
initial FSM 
state 

10 11 

01 
00 



Extracting Yet More Performance 
 Increase the depth of the pipeline to increase the clock rate – 

superpipelining 
 The more stages in the pipeline, the more forwarding/hazard 

hardware needed and the more pipeline latch overhead (i.e., the 
pipeline latch accounts for a larger and larger percentage of the 
clock cycle time) 

 Fetch (and execute) more than one instructions at one time 
(expand every pipeline stage to accommodate multiple 
instructions) – multiple-issue 
 The instruction execution rate, CPI, will be less than 1, so instead we 

use IPC:  instructions per clock cycle 
 E.g., a 6 GHz, four-way multiple-issue processor can execute at a peak 

rate of 24 billion instructions per second with a best case CPI of 0.25  or 
a best case IPC of 4 

 If the datapath has a five stage pipeline, how many instructions are 
active in the pipeline at any given time? 



Types of Parallelism 
 Instruction-level parallelism (ILP) of a program – a measure 

of the average number of instructions in a program that a 
processor might be able to execute at the same time 
 Mostly determined by the number of true (data) dependencies 

and procedural (control) dependencies in relation to the number 
of other instructions 

 Data-level parallelism (DLP) DO  I = 1  TO  100 
   A[I] = A[I] + 1 
CONTINUE 

 Machine parallelism of a                                                        
processor – a measure of the ability of the processor to take 
advantage of the ILP of the program 
 Determined by the number of instructions that can be fetched and 

executed at the same time 

 To achieve high performance, need both ILP and machine 
parallelism 



Multiple-Issue Processor Styles 
 Static multiple-issue processors (aka VLIW) 
 Decisions on which instructions to execute simultaneously are being 

made statically (at compile time by the compiler) 

 E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit 
Parallel Instruction Computer) 
 128-bit “bundles” containing three instructions, each 41-bits plus a 5-bit 

template field (which specifies which FU each instruction needs) 

 Five functional units (IntALU, Mmedia, Dmem, FPALU, Branch) 

 Extensive support for speculation and predication 

 Dynamic multiple-issue processors (aka superscalar) 
 Decisions on which instructions to execute simultaneously (in the 

range of 2 to 8)  are being made dynamically (at run time by the 
hardware) 

 E.g., IBM Power series, Pentium 4, MIPS R10K, AMD Barcelona 



Multiple-Issue Datapath Responsibilities 
 Must handle, with a combination of hardware and 

software fixes, the fundamental limitations of  
 How many instructions to issue in one clock cycle – issue slots 
 Storage (data) dependencies – aka data hazards 

 Limitation more severe in a SS/VLIW processor due to (usually) low ILP 
 Procedural dependencies – aka control hazards 

 Ditto, but even more severe 
 Use dynamic branch prediction to help resolve the ILP issue 

 Resource conflicts – aka structural hazards 
 A SS/VLIW processor has a much larger number of potential resource 

conflicts 
 Functional units may have to arbitrate for result buses and register-file 

write ports 
 Resource conflicts can be eliminated by duplicating the resource or by 

pipelining the resource 



Speculation 
 Speculation is used to allow execution of future instr’s 

that (may) depend on the speculated instruction 
 Speculate on the outcome of a conditional branch (branch 

prediction) 
 Speculate that a store (for which we don’t yet know the 

address) that precedes a load does not refer to the same 
address, allowing the load to be scheduled before the store 
(load speculation) 

 Must have (hardware and/or software) mechanisms for 
 Checking to see if the guess was correct 
 Recovering from the effects of the instructions that were 

executed speculatively if the guess was incorrect 
 Ignore and/or buffer exceptions created by speculatively 

executed instructions until it is clear that they should 
really occur 



Static Multiple Issue Machines (VLIW) 
 Static multiple-issue processors (aka VLIW) use the compiler 

(at compile-time) to statically decide which instructions to 
issue and execute simultaneously 
 Issue packet – the set of instructions that are bundled together and 

issued in one clock cycle – think of it as one large instruction with 
multiple operations 

 The mix of instructions in the packet (bundle) is usually restricted – 
a single “instruction” with several predefined fields 

 The compiler does static branch prediction and code scheduling to 
reduce (control) or eliminate (data) hazards 

 VLIW’s have 
 Multiple functional units 
 Multi-ported register files 
 Wide program bus 



An Example: A VLIW MIPS 
 Consider a 2-issue MIPS with a 2 instr bundle 

 
 
 
 
 
 

 Instructions are always fetched, decoded, and issued in pairs 
 If one instr of the pair can not be used, it is replaced with a noop 

 Need 4 read ports and 2 write ports and a separate memory 
address adder 

ALU Op (R format) 
or 

Branch (I format) 

Load or Store (I format) 

64 bits 



A MIPS VLIW (2-issue) Datapath 
 No hazard hardware (so 

no load use allowed) 
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Code Scheduling Example 
 Consider the following loop code 

 
 
 
 
 

 Must “schedule” the instructions to avoid pipeline stalls 
 Instructions in one bundle must be independent 
 Must separate load use instructions from their loads by one cycle 
 Notice that the first two instructions have a load use dependency, 

the next two and last two have data dependencies  
 Assume branches are perfectly predicted by the hardware 

 

lp: lw $t0,0($s1)   # $t0=array element 
  addu $t0,$t0,$s2  # add scalar in $s2 
  sw $t0,0($s1)   # store result 
  addi $s1,$s1,-4   # decrement pointer 
  bne $s1,$0,lp    # branch if $s1 != 0 



The Scheduled Code (Not Unrolled) 

 Four clock cycles to execute 5 instructions for a 
 CPI of 0.8 (versus the best case of 0.5) 
 IPC of 1.25 (versus the best case of 2.0) 
 noops don’t count towards performance !! 

ALU or branch Data transfer CC 
lp: lw  $t0,0($s1) 1 

addi  $s1,$s1,-4 2 
addu  $t0,$t0,$s2 3 
bne   $s1,$0,lp sw  $t0,4($s1) 4 

ALU or branch Data transfer CC 
lp: 1 

2 
3 
4 
5 



Loop Unrolling 
 Loop unrolling – multiple copies of the loop body are made and 

instructions from different iterations are scheduled together as a 
way to increase ILP 

 Apply loop unrolling (4 times for our example) and then schedule 
the resulting code 
 Eliminate unnecessary loop overhead instructions 
 Schedule so as to avoid load use hazards 

 During unrolling the compiler applies register renaming to eliminate 
all data dependencies that are not true data dependencies 
 lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)

Data dependency on $t0

lw $t0, 0($s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)

No dependency on $t0
between iterations

1

2



Unrolled Code Example 
lp: lw $t0,0($s1)    # $t0=array element 
  lw $t1,-4($s1)   # $t1=array element 
  lw $t2,-8($s1)   # $t2=array element 
  lw $t3,-12($s1)  # $t3=array element 
  addu $t0,$t0,$s2   # add scalar in $s2 
  addu $t1,$t1,$s2   # add scalar in $s2 
  addu $t2,$t2,$s2   # add scalar in $s2 
  addu $t3,$t3,$s2   # add scalar in $s2 
  sw $t0,0($s1)    # store result 
  sw $t1,-4($s1)   # store result 
  sw $t2,-8($s1)   # store result 
  sw $t3,-12($s1)  # store result 
  addi $s1,$s1,-16   # decrement pointer 
  bne $s1,$0,lp     # branch if $s1 != 0 



The Scheduled Code (Unrolled) 

 Eight clock cycles to execute 14 instructions for a 
 CPI of 0.57 (versus the best case of 0.5) 
 IPC of 1.8 (versus the best case of 2.0) 

ALU or branch Data transfer CC 
lp: addi  $s1,$s1,-16 lw  $t0,0($s1) 1 

lw  $t1,12($s1) 2 
addu  $t0,$t0,$s2 lw  $t2,8($s1) 3 
addu  $t1,$t1,$s2 lw  $t3,4($s1) 4 
addu  $t2,$t2,$s2 sw  $t0,16($s1) 5 
addu  $t3,$t3,$s2 sw  $t1,12($s1) 6 

sw  $t2,8($s1) 7 
bne   $s1,$0,lp sw  $t3,4($s1) 8 



VLIW Advantages & Disadvantages 
 Advantages 
 Simpler hardware (potentially less power hungry) 
 Potentially more scalable 

 Allow more instr’s per VLIW bundle and add more FUs 

 Disadvantages 
 Programmer/compiler complexity and longer compilation times 

 Deep pipelines and long latencies can be confusing (making peak 
performance elusive) 

 Lock step operation, i.e., on hazard all future issues stall until hazard 
is resolved (hence need for predication) 

 Object (binary) code incompatibility 
 Needs lots of program memory bandwidth 
 Code bloat 

 Noops are a waste of program memory space  
 Loop unrolling to expose more ILP uses more program memory space 



Dynamic Multiple Issue Machines (SS) 
 Dynamic multiple-issue processors (aka SuperScalar) use 

hardware at run-time to dynamically decide which 
instructions to issue and execute simultaneously 

 Instruction-fetch and issue – fetch instructions, decode 
them, and issue them to a FU to await execution 
 Defines the Instruction lookahead capability – fetch, decode 

and issue instructions beyond the current instruction 
 Instruction-execution – as soon as the source operands 

and the FU are ready, the result can be calculated 
 Defines the processor lookahead capability – complete 

execution of issued instructions beyond the current instruction 
 Instruction-commit – when it is safe to, write back results 

to the RegFile or D$ (i.e., change the machine state) 



In-Order vs Out-of-Order 
 Instruction fetch and decode units are required to issue 

instructions in-order so that dependencies can be tracked 
 The commit unit is required to write results to registers and 

memory in program fetch order so that 
 if exceptions occur the only registers updated will be those written 

by instructions before the one causing the exception 
 if branches are mispredicted, those instructions executed after the 

mispredicted branch don’t change the machine state (i.e., we use 
the commit unit to correct incorrect speculation) 

 Although the front end (fetch, decode, and issue) and back 
end (commit) of the pipeline run in-order, the FUs are free to 
initiate execution whenever the data they need is available – 
out-of-(program) order execution 
 Allowing out-of-order execution increases the amount of ILP 



Dynamic Pipeline Scheduling 
 Three core element 

Commit
unit

Instruction fetch
and decode unit

…

In-order issue

In-order commit

Load/
Store

Floating
pointIntegerInteger …Functional

units
Out-of-order execute

Reservation
station

Reservation
station

Reservation
station

Reservation
station



Pentium P4 
 20 stages 
 7 FU 
 Trace cache 

Instruction prefetch 
and decodeBranch 

prediction

Register file

IntegerComplex 
instruction Integer Floating 

point Load Store

Data 
cache

Trace cache

Microoperation queue

Dispatch and register remaining

Integer and floating-point operation queue Memory operation queue

Commit 
unit



PowerPC 750 



Summary:  Extracting More Performance 
 To achieve high performance, need both machine parallelism 

and instruction level parallelism (ILP) by 
 Superpipelining 
 Static multiple-issue (VLIW) 
 Dynamic multiple-issue (superscalar) 

 A processor’s instruction issue and execution policies impact the 
available ILP 
 In-order fetch, issue, and commit and out-of-order execution 

 Pipelining creates true dependencies (read before write) 
 Out-of-order execution creates antidependencies (write before read) 
 Out-of-order execution creates output dependencies (write before write) 
 In-order commit allows speculation (to increase ILP) and is required to 

implement precise interrupts 

 Register renaming can solve these storage dependencies 



CISC vs RISC vs SS vs VLIW 

CISC RISC Superscalar VLIW 
Instr size variable size fixed size fixed size fixed size (but 

large) 
Instr format variable 

format 
fixed format fixed format fixed format 

Registers few, some 
special 
Limited # of 
ports 

Many GP 
Limited # of 
ports 

GP and 
rename (RUU) 
Many ports 

many, many 
GP 
Many ports 

Memory 
reference 

embedded in 
many instr’s 

load/store load/store load/store 

Key Issues decode 
complexity 

data 
forwarding, 
hazards 

hardware 
dependency 
resolution 

(compiler) 
code 
scheduling 



Evolution of Pipelined, SS Processors 
Year Clock Rate # Pipe 

Stages 
Issue 
Width 

OOO? Cores/
Chip 

Power 

Intel 486 1989 25 MHz 5 1 No 1 5 W 

Intel Pentium 1993 66 MHz 5 2 No 1 10 W 

Intel Pentium 
Pro 

1997 200 MHz 10 3 Yes 1 29 W 

Intel Pentium 4 
Willamette 

2001 2000 MHz 22 3 Yes 1 75 W 

Intel Pentium 4 
Prescott 

2004 3600 MHz 31 3 Yes 1 103 W 

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W 

Sun USPARC III 2003 1950 MHz 14 4 No 1 90 W 

Sun T1 
(Niagara) 

2005 1200 MHz 6 1 No 8 70 W 
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