
Pipeline

Chapter 4

Reminder

Data Hazard and Forwarding
 Interesting instruction sequence
 SUB $2, $1, $3
 AND $12, $2, $5
 OR $13, $6, $2
 ADD $14, $2, $2
 SW $15, 100 ($2)
 Last four instructions depend on $2
 Availability of new value after 5th cycle

Usage of the first result

Solution 1
 Solution on compiler level
 Forbid code sequences as given in example
 Insert nop operations
 Result
 SUB $2, $1, $3
 NOP
 NOP
 AND $12, $2, $5
 OR $13, $6, $2
 ADD $14, $2, $2
 SW $15, 100 ($2)

Solution 2
 Detection of hazard
 Forwarding of the result
 Hazard types
 1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
 1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
 2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
 2b. MEM/WB.RegisterRd = ID/EX.RegisterRt
 Pipeline register name.register field

Hazards
 First hazard
 SUB $2, $1, $3
 AND $12, $2, $5
 Detectable:
 And in EX stage and
 Prior instruction in MEM stage
 Hazard 1a
 EX/MEM.Register.Rd = ID/EX.RegisterRs = $2

Dependencies

Detection conditions
 EX hazard
 If (EX/MEM.RegWrite
 and (EX/MEM.RegisterRd <> 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
 If (EX/MEM.RegWrite
 and (EX/MEM.RegisterRd <> 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

Detection conditions
 MEM hazard
 If (MEM/WB.RegWrite
 and (MEM/WB.RegisterRd <> 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
 If (MEM/WB.RegWrite
 and (MEM/WB.RegisterRd <> 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

ALU without forwarding

ALU without forwarding

Datapath with forwarding

Example with forwarding
 Instructions with double dependency
 sub $2, $1, $3
 and $4, $2, $5
 or $4, $4, $2
 add $9, $4, $2
 Instructions in execution cycle
 Cycle 3: sub
 Cycle 4: and
 Cycle 5: or
 Cycle 5: add

Example with forwarding

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 sub $2, $1, $3

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4, $4, $2

Clock 3

2

5

10 10

$2

$5

5
2

4

$1

$3

3
1

2

Control

ALU

M

WB

Example with forwarding

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

or $4, $4, $2 and $4, $2, $5

ID/EX

sub $2, . . .

EX/MEM

before<1>

MEM/WB

add $9, $4, $2

Clock 4

4

6

10 10

$4

$2

6
2

4

$2

$5

5
2

4

Control

ALU

10

2

WB

Example with forwarding

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

add $9, $4, $2 or $4, $4, $2

ID/EX

and $4, . . .

EX/MEM

sub $2, . . .

MEM/WB

after<1>

Clock 5

4

2

10 10

$4

$2

2
4

9

$4

$2

4
2

2
4

Control

ALU

10

WB

2

1

4

Example with forwarding

PC Instruction
memory

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

after<1>after<2> add $9, $4, $2 or $4, . . .

EX/MEM

and $4, . . .

MEM/WB

Clock 6

10

$4

$2

2
4

9

ALU

10

4

WB

4

1

Registers

In
st

ru
ct

io
n

IF/ID

ID/EX

4

Control

Summary
 Pipelining
 Data
 Control signals
 Register references

 Forwarding
 Detect a hazard
 Assemble the operands from

 Register
 EX/MEM register
 MEM/WB register

Data hazard and stalls
 Avoiding of hazards
 Code reordering
 Forwarding

 One problem is left over
 lw $5, 100 ($4)
 add $6, $7, $5
 lw writes not before cycle 5 -> data hazard!
 The hazard has to be detected and the pipeline to be stalled.

Pipeline with problem

Data hazard
 Conditions for the hazard detection
 If (ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 ((ID/EX.RegisterRt = IF/ID.RegisterRt)))
 stall the pipeline
 Check for load instruction
 Check if the register to be loaded is part of the current

instruction
 If it is, stall the pipeline

Implementation of a stall
 For one cycle (set all control signal to zero)
 Stop update of PC
 Freeze IF/ID pipeline register

Datapath with stall

Example with stall
 Code sequence
 lw $2, 20($1)
 and $4, $2, $5
 or $8, $2, $6
 add $9, $4, $2
 slt $1, $6, $7

Example with stall

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

ID/EX.MemRead

M

WB

$1

$X

X
1

2

before<3>

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

ID/EX

EX/MEM

MEM/WB

and $4, $2, $5 lw $2, 20($1) before<1> before<2>

Clock 2

1

1

X

X
11

Control

ALU

M

WB

Example with stall
Hazard

detection
unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

lw $2, 20($1)

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4, $4, $2

Clock 3

2

5

2

5
00 11

$2

$5

5
2

4

$1

$X

X
1

2

Control

ALU

M

WB

ID/EX.MemRead

Example with stall

$2

$5

5
2

2
4

WB

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 bubble

ID/EX

lw $2, . . .

EX/MEM

before<1>

MEM/WB

Clock 4

2

2

5

5
10

11

00

$2

$5

5
2

4

Control

ALU

M

WB

Forwarding
unit

ID/EX.MemRead

or $4, $4, $2

Example with stall
Hazard

detection
unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

2

bubble lw $2, . . .

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

EX/MEM

MEM/WB

add $9, $4, $2

Clock 5

2

2
10 10

11

$4

$2

2
4

4

4

2

4

$2

$5

5
2

4

Control

ALU

0

WB

ID/EX.MemRead

or $4, $4, $2

Example with stall

PC Instruction
memory

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

bubble

Registers

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

add $9, $4, $2

ID/EX

and $4, . . .

EX/MEM

MEM/WB

Clock 6

4

4

2

2
10 10

$4

$2

2
4

49

$2

2

Control

ALU

10

WB
0

after<1>

Forwarding
unit

$4

4

4

or $4, $4, $2

ID/EX.MemRead

M
u
x

Example with stall

Registers

In
st

ru
ct

io
n

ID/EX

4

Control

PC Instruction
memory

IF
/ID

W
rit

e

P
C

W
rit

e

add $9, $4, $2 or $4, . . . and $4, . . .after<2> after<1>

Clock 7

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

EX/MEM

MEM/WB

10 10

$4

$2

2
4

9

ALU

10

WB

44

1

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRt

ID/EX.MemRead

IF/ID

Branch hazards
Current design:
 Decision occurs in MEM stage
 Branch not taken
 Continuously fetch instructions
 Simply continue

 Branch taken
 Continuously fetch instructions
 On decision: discard three instructions
 Set controls to '0'
 Clear instructions in IF, ID and EX stage
 No register changed because no instruction has reached the

write back stage

Branch hazard
 Continuation of the program @ 72

Reduction of branch costs
 Move branch decision to an earlier stage
 Select branch address at
 End of EX stage -> two cycle penalty
 End of ID stage -> one cycle penalty

 Move the branch address adder to ID stage
 Branch detection in ID stage
 Exclusive-or of the bits
 AND of the results

 Clear instruction field in IF/ID pipeline -> creates a NOP

Data path with branch

PC Instruction
memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

Example
 Branch is taken
 36 sub $10 $4, $8
 40 beq $1, $3, 7 ;40 + 4 + 7*4 = 72
 44 and $12 $2, $5
 48 or $13 $2, $6
 52 add $14 $4, $2
 56 slt $15 $6, $7

 72 lw $4, 50(7)

Example

Example

Delayed branch
 If the branch hardware has been moved to the ID stage, then

we can eliminate all branch stalls with delayed branches which
are defined as always executing the next sequential instruction
after the branch instruction – the branch takes effect after that
next instruction
 MIPS compiler moves an instruction to immediately after the branch

that is not affected by the branch (a safe instruction) thereby hiding
the branch delay

 With deeper pipelines, the branch delay grows requiring more
than one delay slot
 Delayed branches have lost popularity compared to more expensive

but more flexible (dynamic) hardware branch prediction
 Growth in available transistors has made hardware branch prediction

relatively cheaper

Scheduling Branch Delay Slots

 A is the best choice, fills delay slot and reduces IC
 In B and C, the sub instruction may need to be copied, increasing IC
 In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Static Branch Prediction
 Resolve branch hazards by assuming a given outcome and

proceeding without waiting to see the actual branch outcome
1. Predict not taken – always predict branches will not be taken,

continue to fetch from the sequential instruction stream, only
when branch is taken does the pipeline stall
 If taken, flush instructions after the branch (earlier in the pipeline)

 in IF, ID, and EX stages if branch logic in MEM – three stalls
 In IF and ID stages if branch logic in EX – two stalls
 in IF stage if branch logic in ID – one stall

 ensure that those flushed instructions haven’t changed the
machine state – automatic in the MIPS pipeline since machine state
changing operations are at the tail end of the pipeline (MemWrite
(in MEM) or RegWrite (in WB))

 restart the pipeline at the branch destination

flush

Flushing with Misprediction (Not Taken)

4 beq $1,$2,2 I
n
s
t
r.

O
r
d
e
r

ALU
 IM Reg DM Reg

16 and $6,$1,$7

20 or r8,$1,$9

ALU
 IM Reg DM Reg

ALU
 IM Reg DM Reg

ALU
 IM Reg DM Reg 8 sub $4,$1,$5

 To flush the IF stage instruction, assert IF.Flush to zero
the instruction field of the IF/ID pipeline register
(transforming it into a noop)

Branching Structures
 Predict not taken works well for

“top of the loop” branching
structures
 But such loops have jumps at the

bottom of the loop to return to the
top of the loop – and incur the
jump stall overhead

 Predict not taken doesn’t work

well for “bottom of the loop”
branching structures

Loop: beq $1,$2,Out
 1nd loop instr
 .
 .
 .
 last loop instr
 j Loop
Out: fall out instr

Loop: 1st loop instr
 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

Static Branch Prediction, con’t
 Resolve branch hazards by assuming a given outcome and

proceeding
 Predict taken – predict branches will always be taken

 Predict taken always incurs one stall cycle (if branch destination
hardware has been moved to the ID stage)

 Is there a way to “cache” the address of the branch target instruction
??

 As the branch penalty increases (for deeper pipelines), a
simple static prediction scheme will hurt performance.
With more hardware, it is possible to try to predict
branch behavior dynamically during program execution
 Dynamic branch prediction – predict branches at run-time

using run-time information

Dynamic Branch Prediction
 A branch prediction buffer (aka branch history table (BHT)) in

the IF stage addressed by the lower bits of the PC, contains
bit(s) passed to the ID stage through the IF/ID pipeline register
that tells whether the branch was taken the last time it was
execute
 Prediction bit may predict incorrectly (may be a wrong prediction for

this branch this iteration or may be from a different branch with the
same low order PC bits) but the doesn’t affect correctness, just
performance
 Branch decision occurs in the ID stage after determining that the fetched

instruction is a branch and checking the prediction bit(s)
 If the prediction is wrong, flush the incorrect instruction(s) in

pipeline, restart the pipeline with the right instruction, and invert the
prediction bit(s)
 A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv) to 18%

(eqntott)

Branch Target Buffer
 The BHT predicts when a branch is taken, but does not tell

where its taken to!
 A branch target buffer (BTB) in the IF stage caches the branch target

address, but we also need to fetch the next sequential instruction.
The prediction bit in IF/ID selects which “next” instruction will be
loaded into IF/ID at the next clock edge
 Would need a two read port
 instruction memory

 If the prediction is correct, stalls can be avoided no matter which
direction they go

 Or the BTB can cache the
branch taken instruction while the
instruction memory is fetching the next
sequential instruction

Read
Address

Instruction
Memory

PC
 0

BTB

1-bit Prediction Accuracy
 A 1-bit predictor will be incorrect twice when not taken

 For 10 times through the loop we have a 80% prediction
accuracy for a branch that is taken 90% of the time

 Assume predict_bit = 0 to start (indicating
branch not taken) and loop control is at the
bottom of the loop code

1. First time through the loop, the predictor
mispredicts the branch since the branch is
taken back to the top of the loop; invert
prediction bit (predict_bit = 1)

2. As long as branch is taken (looping),
prediction is correct

3. Exiting the loop, the predictor again
mispredicts the branch since this time the
branch is not taken falling out of the loop;
invert prediction bit (predict_bit = 0)

Loop: 1st loop instr
 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

2-bit Predictors
 A 2-bit scheme can give 90% accuracy since a prediction must

be wrong twice before the prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken

Taken
Taken

Taken

Loop: 1st loop instr
 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

wrong on loop
fall out

0

1 1

right 9 times

right on 1st
iteration

0
 BHT also

stores the
initial FSM
state

10 11

01
00

Extracting Yet More Performance
 Increase the depth of the pipeline to increase the clock rate –

superpipelining
 The more stages in the pipeline, the more forwarding/hazard

hardware needed and the more pipeline latch overhead (i.e., the
pipeline latch accounts for a larger and larger percentage of the
clock cycle time)

 Fetch (and execute) more than one instructions at one time
(expand every pipeline stage to accommodate multiple
instructions) – multiple-issue
 The instruction execution rate, CPI, will be less than 1, so instead we

use IPC: instructions per clock cycle
 E.g., a 6 GHz, four-way multiple-issue processor can execute at a peak

rate of 24 billion instructions per second with a best case CPI of 0.25 or
a best case IPC of 4

 If the datapath has a five stage pipeline, how many instructions are
active in the pipeline at any given time?

Types of Parallelism
 Instruction-level parallelism (ILP) of a program – a measure

of the average number of instructions in a program that a
processor might be able to execute at the same time
 Mostly determined by the number of true (data) dependencies

and procedural (control) dependencies in relation to the number
of other instructions

 Data-level parallelism (DLP) DO I = 1 TO 100
 A[I] = A[I] + 1
CONTINUE

 Machine parallelism of a
processor – a measure of the ability of the processor to take
advantage of the ILP of the program
 Determined by the number of instructions that can be fetched and

executed at the same time

 To achieve high performance, need both ILP and machine
parallelism

Multiple-Issue Processor Styles
 Static multiple-issue processors (aka VLIW)
 Decisions on which instructions to execute simultaneously are being

made statically (at compile time by the compiler)

 E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC (Explicit
Parallel Instruction Computer)
 128-bit “bundles” containing three instructions, each 41-bits plus a 5-bit

template field (which specifies which FU each instruction needs)

 Five functional units (IntALU, Mmedia, Dmem, FPALU, Branch)

 Extensive support for speculation and predication

 Dynamic multiple-issue processors (aka superscalar)
 Decisions on which instructions to execute simultaneously (in the

range of 2 to 8) are being made dynamically (at run time by the
hardware)

 E.g., IBM Power series, Pentium 4, MIPS R10K, AMD Barcelona

Multiple-Issue Datapath Responsibilities
 Must handle, with a combination of hardware and

software fixes, the fundamental limitations of
 How many instructions to issue in one clock cycle – issue slots
 Storage (data) dependencies – aka data hazards

 Limitation more severe in a SS/VLIW processor due to (usually) low ILP
 Procedural dependencies – aka control hazards

 Ditto, but even more severe
 Use dynamic branch prediction to help resolve the ILP issue

 Resource conflicts – aka structural hazards
 A SS/VLIW processor has a much larger number of potential resource

conflicts
 Functional units may have to arbitrate for result buses and register-file

write ports
 Resource conflicts can be eliminated by duplicating the resource or by

pipelining the resource

Speculation
 Speculation is used to allow execution of future instr’s

that (may) depend on the speculated instruction
 Speculate on the outcome of a conditional branch (branch

prediction)
 Speculate that a store (for which we don’t yet know the

address) that precedes a load does not refer to the same
address, allowing the load to be scheduled before the store
(load speculation)

 Must have (hardware and/or software) mechanisms for
 Checking to see if the guess was correct
 Recovering from the effects of the instructions that were

executed speculatively if the guess was incorrect
 Ignore and/or buffer exceptions created by speculatively

executed instructions until it is clear that they should
really occur

Static Multiple Issue Machines (VLIW)
 Static multiple-issue processors (aka VLIW) use the compiler

(at compile-time) to statically decide which instructions to
issue and execute simultaneously
 Issue packet – the set of instructions that are bundled together and

issued in one clock cycle – think of it as one large instruction with
multiple operations

 The mix of instructions in the packet (bundle) is usually restricted –
a single “instruction” with several predefined fields

 The compiler does static branch prediction and code scheduling to
reduce (control) or eliminate (data) hazards

 VLIW’s have
 Multiple functional units
 Multi-ported register files
 Wide program bus

An Example: A VLIW MIPS
 Consider a 2-issue MIPS with a 2 instr bundle

 Instructions are always fetched, decoded, and issued in pairs
 If one instr of the pair can not be used, it is replaced with a noop

 Need 4 read ports and 2 write ports and a separate memory
address adder

ALU Op (R format)
or

Branch (I format)

Load or Store (I format)

64 bits

A MIPS VLIW (2-issue) Datapath
 No hazard hardware (so

no load use allowed)

Instruction
Memory

Add

PC

4

Write Data

Write Addr

Register
File

ALU

Add

Data
Memory

Sign
Extend

Add

Sign
Extend

Code Scheduling Example
 Consider the following loop code

 Must “schedule” the instructions to avoid pipeline stalls
 Instructions in one bundle must be independent
 Must separate load use instructions from their loads by one cycle
 Notice that the first two instructions have a load use dependency,

the next two and last two have data dependencies
 Assume branches are perfectly predicted by the hardware

lp: lw $t0,0($s1) # $t0=array element
 addu $t0,$t0,$s2 # add scalar in $s2
 sw $t0,0($s1) # store result
 addi $s1,$s1,-4 # decrement pointer
 bne $s1,$0,lp # branch if $s1 != 0

The Scheduled Code (Not Unrolled)

 Four clock cycles to execute 5 instructions for a
 CPI of 0.8 (versus the best case of 0.5)
 IPC of 1.25 (versus the best case of 2.0)
 noops don’t count towards performance !!

ALU or branch Data transfer CC
lp: lw $t0,0($s1) 1

addi $s1,$s1,-4 2
addu $t0,$t0,$s2 3
bne $s1,$0,lp sw $t0,4($s1) 4

ALU or branch Data transfer CC
lp: 1

2
3
4
5

Loop Unrolling
 Loop unrolling – multiple copies of the loop body are made and

instructions from different iterations are scheduled together as a
way to increase ILP

 Apply loop unrolling (4 times for our example) and then schedule
the resulting code
 Eliminate unnecessary loop overhead instructions
 Schedule so as to avoid load use hazards

 During unrolling the compiler applies register renaming to eliminate
all data dependencies that are not true data dependencies
 lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)

Data dependency on $t0

lw $t0, 0($s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)

No dependency on $t0
between iterations

1

2

Unrolled Code Example
lp: lw $t0,0($s1) # $t0=array element
 lw $t1,-4($s1) # $t1=array element
 lw $t2,-8($s1) # $t2=array element
 lw $t3,-12($s1) # $t3=array element
 addu $t0,$t0,$s2 # add scalar in $s2
 addu $t1,$t1,$s2 # add scalar in $s2
 addu $t2,$t2,$s2 # add scalar in $s2
 addu $t3,$t3,$s2 # add scalar in $s2
 sw $t0,0($s1) # store result
 sw $t1,-4($s1) # store result
 sw $t2,-8($s1) # store result
 sw $t3,-12($s1) # store result
 addi $s1,$s1,-16 # decrement pointer
 bne $s1,$0,lp # branch if $s1 != 0

The Scheduled Code (Unrolled)

 Eight clock cycles to execute 14 instructions for a
 CPI of 0.57 (versus the best case of 0.5)
 IPC of 1.8 (versus the best case of 2.0)

ALU or branch Data transfer CC
lp: addi $s1,$s1,-16 lw $t0,0($s1) 1

lw $t1,12($s1) 2
addu $t0,$t0,$s2 lw $t2,8($s1) 3
addu $t1,$t1,$s2 lw $t3,4($s1) 4
addu $t2,$t2,$s2 sw $t0,16($s1) 5
addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2,8($s1) 7
bne $s1,$0,lp sw $t3,4($s1) 8

VLIW Advantages & Disadvantages
 Advantages
 Simpler hardware (potentially less power hungry)
 Potentially more scalable

 Allow more instr’s per VLIW bundle and add more FUs

 Disadvantages
 Programmer/compiler complexity and longer compilation times

 Deep pipelines and long latencies can be confusing (making peak
performance elusive)

 Lock step operation, i.e., on hazard all future issues stall until hazard
is resolved (hence need for predication)

 Object (binary) code incompatibility
 Needs lots of program memory bandwidth
 Code bloat

 Noops are a waste of program memory space
 Loop unrolling to expose more ILP uses more program memory space

Dynamic Multiple Issue Machines (SS)
 Dynamic multiple-issue processors (aka SuperScalar) use

hardware at run-time to dynamically decide which
instructions to issue and execute simultaneously

 Instruction-fetch and issue – fetch instructions, decode
them, and issue them to a FU to await execution
 Defines the Instruction lookahead capability – fetch, decode

and issue instructions beyond the current instruction
 Instruction-execution – as soon as the source operands

and the FU are ready, the result can be calculated
 Defines the processor lookahead capability – complete

execution of issued instructions beyond the current instruction
 Instruction-commit – when it is safe to, write back results

to the RegFile or D$ (i.e., change the machine state)

In-Order vs Out-of-Order
 Instruction fetch and decode units are required to issue

instructions in-order so that dependencies can be tracked
 The commit unit is required to write results to registers and

memory in program fetch order so that
 if exceptions occur the only registers updated will be those written

by instructions before the one causing the exception
 if branches are mispredicted, those instructions executed after the

mispredicted branch don’t change the machine state (i.e., we use
the commit unit to correct incorrect speculation)

 Although the front end (fetch, decode, and issue) and back
end (commit) of the pipeline run in-order, the FUs are free to
initiate execution whenever the data they need is available –
out-of-(program) order execution
 Allowing out-of-order execution increases the amount of ILP

Dynamic Pipeline Scheduling
 Three core element

Commit
unit

Instruction fetch
and decode unit

…

In-order issue

In-order commit

Load/
Store

Floating
pointIntegerInteger …Functional

units
Out-of-order execute

Reservation
station

Reservation
station

Reservation
station

Reservation
station

Pentium P4
 20 stages
 7 FU
 Trace cache

Instruction prefetch
and decodeBranch

prediction

Register file

IntegerComplex
instruction Integer Floating

point Load Store

Data
cache

Trace cache

Microoperation queue

Dispatch and register remaining

Integer and floating-point operation queue Memory operation queue

Commit
unit

PowerPC 750

Summary: Extracting More Performance
 To achieve high performance, need both machine parallelism

and instruction level parallelism (ILP) by
 Superpipelining
 Static multiple-issue (VLIW)
 Dynamic multiple-issue (superscalar)

 A processor’s instruction issue and execution policies impact the
available ILP
 In-order fetch, issue, and commit and out-of-order execution

 Pipelining creates true dependencies (read before write)
 Out-of-order execution creates antidependencies (write before read)
 Out-of-order execution creates output dependencies (write before write)
 In-order commit allows speculation (to increase ILP) and is required to

implement precise interrupts

 Register renaming can solve these storage dependencies

CISC vs RISC vs SS vs VLIW

CISC RISC Superscalar VLIW
Instr size variable size fixed size fixed size fixed size (but

large)
Instr format variable

format
fixed format fixed format fixed format

Registers few, some
special
Limited # of
ports

Many GP
Limited # of
ports

GP and
rename (RUU)
Many ports

many, many
GP
Many ports

Memory
reference

embedded in
many instr’s

load/store load/store load/store

Key Issues decode
complexity

data
forwarding,
hazards

hardware
dependency
resolution

(compiler)
code
scheduling

Evolution of Pipelined, SS Processors
Year Clock Rate # Pipe

Stages
Issue
Width

OOO? Cores/
Chip

Power

Intel 486 1989 25 MHz 5 1 No 1 5 W

Intel Pentium 1993 66 MHz 5 2 No 1 10 W

Intel Pentium
Pro

1997 200 MHz 10 3 Yes 1 29 W

Intel Pentium 4
Willamette

2001 2000 MHz 22 3 Yes 1 75 W

Intel Pentium 4
Prescott

2004 3600 MHz 31 3 Yes 1 103 W

Intel Core 2006 2930 MHz 14 4 Yes 2 75 W

Sun USPARC III 2003 1950 MHz 14 4 No 1 90 W

Sun T1
(Niagara)

2005 1200 MHz 6 1 No 8 70 W

	Pipeline
	Reminder
	Data Hazard and Forwarding
	Usage of the first result
	Solution 1
	Solution 2
	Hazards
	Dependencies
	Detection conditions
	Detection conditions
	ALU without forwarding
	ALU without forwarding
	Datapath with forwarding
	Example with forwarding
	Example with forwarding
	Example with forwarding
	Example with forwarding
	Example with forwarding
	Summary
	Data hazard and stalls
	Pipeline with problem
	Data hazard
	Implementation of a stall
	Datapath with stall
	Example with stall
	Example with stall
	Example with stall
	Example with stall
	Example with stall
	Example with stall
	Example with stall
	Branch hazards
	Branch hazard
	Reduction of branch costs
	Data path with branch
	Example
	Example
	Example
	Delayed branch
	Scheduling Branch Delay Slots
	Static Branch Prediction
	Flushing with Misprediction (Not Taken)
	Branching Structures
	Static Branch Prediction, con’t
	Dynamic Branch Prediction
	Branch Target Buffer
	1-bit Prediction Accuracy
	2-bit Predictors
	Extracting Yet More Performance
	Types of Parallelism
	Multiple-Issue Processor Styles
	Multiple-Issue Datapath Responsibilities
	Speculation
	Static Multiple Issue Machines (VLIW)
	An Example: A VLIW MIPS
	A MIPS VLIW (2-issue) Datapath
	Code Scheduling Example
	The Scheduled Code (Not Unrolled)
	Loop Unrolling
	Unrolled Code Example
	The Scheduled Code (Unrolled)
	VLIW Advantages & Disadvantages
	Dynamic Multiple Issue Machines (SS)
	In-Order vs Out-of-Order
	Dynamic Pipeline Scheduling
	Pentium P4
	PowerPC 750
	Summary: Extracting More Performance
	CISC vs RISC vs SS vs VLIW
	Evolution of Pipelined, SS Processors

