
MIPS Instructions
MIPS Details

OP CODE RD
Register Dest

RT
Register Target

RS
Register Source

SHAMT
Shift Amount FUNCT

6 555 5 6

R-TYPE

OP CODE IMMEDIATERT
Register Target

RS
Register Source

6 1655

I-TYPE

OP CODE IMMEDIATE

6 26

J-TYPE

Overview

P Instruction format

Instruction Format

P J-format: used for j and jal
P I-format: used for instructions with immediates, lw and sw (since the

offset counts as an immediate), and the branches (beq and bne),
P (but not the shift instructions; later)
P R-format: used for all other instructions
P It will soon become clear why the instructions have been partitioned

in this way.

OP CODE RD
Register Dest

RT
Register Target

RS
Register Source

SHAMT
Shift Amount FUNCT

6 555 5 6

R-TYPE

R-Format Instruction

P opcode: partially specifies what instruction it is (Note: This number is
equal to 0 for all R-Format instructions.)

P funct: combined with opcode, this number exactly specifies the
instruction

P rs (Source Register): generally used to specify register containing
first operand

P rt (Target Register): generally used to specify register containing
second operand (note that name is misleading)

P rd (Destination Register): generally used to specify register which
will receive result of computation

OP CODE RD
Register Dest

RT
Register Target

RS
Register Source

SHAMT
Shift Amount FUNCT

6 555 5 6

R-TYPE

R-Format Instruction

P shamt: This field contains the amount a shift instruction will shift by.
Shifting a 32-bit word by more than 31 is useless, so this field is only
5 bits (so it can represent the numbers 0-31).

P This field is set to 0 in all but the shift instructions.

R-Format examples
P What is the machine code of add $s1, $s3, $s4
P Opcode : 000000 (0 or 0x00)
P RS : 10011 (19 or 0x13)
P RT : 10100 (20 or 0x14)
P RD : 10001 (17 or 0x11)
P SHAMT : 00000
P FUNCT : 100000 (32 or 0x20)
P CODE : 000000 10011 10100 10001 00000 100000
P CODE : 0000 0010 0111 0100 1000 1000 0010 0000
P CODE : 0x02748820

P What is the machine code for sub $t0, $s5, $a0?

R-format example
P What is the machine code for sub $t0, $s5, $a0?
P Opcode : 000000 (0 or 0x00)
P RS : 10101 (21 or 0x15)
P RT : 00100 (4 or 0x04)
P RD : 01000 (8 or 0x08)
P SHAMT : 00000
P FUNCT : 100010 (34 or 0x22)
P CODE : 000000 10101 00100 01000 00000 100010
P CODE : 0000 0010 1010 0100 0100 0000 0010 0010
P CODE : 0x02A44022

P What is the assembly code for 0x02324020

R-format example
P 0x02324020
P 0000 0010 0011 0010 0100 0000 0010 0000
P 000000 10001 10010 01000 00000 100000
P Opcode : 0
P RS : 10001 (17 or 0x11) -> s1
P RT : 10010 (18 or 0x12) -> s2
P RD : 01000 (8 or 0x08) -> t0
P SHAMT : 00000
P Funct : 100000 : 32 or 0x20
P Assembly code: add $t0, $s1, $s2

OP CODE IMMEDIATERT
Register Target

RS
Register Source

6 1655

I-TYPE

I-Format Instruction

P opcode: same as before except that, since there’s no funct field,
opcode uniquely specifies an I-format instruction

P This also answers question of why R-format has two 6-bit fields to
identify instruction instead of a single 12-bit field in order to be
consistent with other formats.

P rs: specifies the only register operand (if there is one)
P rt: specifies register which will receive result of computation (this is

why it’s called the target register “rt”)

OP CODE IMMEDIATERT
Register Target

RS
Register Source

6 1655

I-TYPE

I-Format Instruction

P The Immediate Field:
< addi, slti, slitu, the immediate is sign-extended to 32 bits. Thus,

it’s treated as a signed integer.
< 16 bits can be used to represent immediate up to 216 different

values (actually it is ±215)
< This is large enough to handle the offset in a typical lw or sw, plus

a vast majority of values that will be used in the slti instruction.

I-Format Problem

P Problem 1:
< Chances are that addi, lw, sw and slti will use immediates small

enough to fit in the immediate field.
< What if too big?

– We need a way to deal with a 32-bit immediate in any I-format
instruction.

– New instruction: lui register, immediate
– stands for Load Upper Immediate
– takes 16-bit immediate and puts these bits in the upper half

(high order half) of the specified register
– sets lower half to 0s

I-Format Problem

P Example:
< addi $t0,$t0, 0xABABCDCD

P becomes:
< lui $at, 0xABAB
< ori $at, $at, 0xCDCD
< add $t0,$t0,$at

P Now each I-format instruction has only a 16-bit immediate.
P An instruction that must be broken up is called a pseudoinstruction.

(Note that $at was used in this code.)

I-format example
P Machine code for lw $a2, 32($t0)
P Opcode: 0x23 -> 100011
P RS : 0x08 -> 01000
P RT : 0x06 -> 00110
P Immediate value : 32 -> 0x0020 -> 0000 0000 0010 0000
P CODE : 100011 01000 00110 0000 0000 0010 0000
P CODE : 1000 1101 0000 0110 0000 0000 0010 0000
P CODE : 0x8C060020

P What is the code for sw $t4, 1200($s1)?

I-format example
P Machine code for sw $t4, 1200($s1)
P Opcode: 0x2B -> 101011
P RS : 0x11 -> 10001
P RT : 0x0C -> 01100
P Immediate value : 1200 -> 0x04B0 -> 0000 0100 1011 0000
P CODE : 101011 10001 01100 0000 0100 1011 0000
P CODE : 1010 1110 0010 1100 0000 0100 1011 0000
P CODE : 0xAE2C04B0

P What is the code for addi $a0, $a1, 34 (signed)?

I-format example
P Machine code for addi $a0, $a1, 34 (signed)
P Opcode: 0x08 -> 001000
P RS : 0x05 -> 00101
P RT : 0x04 -> 00100
P Immediate value : 34 -> 0x0022 -> 0000 0000 0010 0010
P CODE : 001000 00101 00100 0000 0000 0010 0010
P CODE : 0010 0000 1010 0100 0000 0000 0010 0010
P CODE : 0x20A40022

OP CODE IMMEDIATERT
Register Target

RS
Register Source

6 1655

I-TYPE

Branches: PC-Relative Addressing

P opcode specifies beq v. bne
P Rs and Rt specify registers to compare
P What can immediate specify?
< Immediate is only 16 bits
< PC is 32-bit pointer to memory
< So immediate cannot specify entire address to branch to.

P Though we may want to branch to anywhere in memory, a single
branch will generally change the PC by a very small amount.

Branches: PC-Relative Addressing

P Solution: PC-Relative Addressing
P Let the 16-bit immediate field be a signed two’s complement integer

to be added to the PC if we take the branch.
P Now we can branch ± 215 bytes from the PC, which should be enough

to cover any loop.
P Note: Instructions are words, so they’re word aligned (byte address

is always a multiple of 4, which means it ends with 00 in binary).
< So the number of bytes to add to the PC will always be a multiple

of 4.
< So specify the immediate in words.

P Now, we can branch ± 215 words from the PC (or ± 217 bytes), so we
can handle loops 4 times as large.

Branches: PC-Relative Addressing

P Final Calculation:
P If we don’t take the branch:
< PC = PC + 4

P If we do take the branch:
< PC = (PC + 4) + (immediate * 4)

P Observations
< Immediate field specifies the number of words to jump, which is

simply the number of instructions to jump.
< Immediate field can be positive or negative.
< Due to hardware, add immediate to (PC+4), not to PC; will be

clearer why later in course

Branch example
P If you have the following code:

bne $s1, $0, label1 0x04000000
.... 0x04000004
.... 0x04000008
.... 0x0400000C

label1:lw 0x04000010

P What is the machine code?
P Opcode : 0x05 -> 000101
P RS : 0x11 -> 10001
P RT : 0x00 -> 00000
P label1 is 16 memory location away from bne instruction
< 16 - 4 = 12
< 12/4 = 3 (3 instructions away from bne)
< So the immediate value is 0x0003

P CODE : 0001 0110 0010 0000 0000 0000 0000 0011
P CODE : 0x16200003

Branch example
P If you have the following code:

beq $a1, $s0, label1 0x04000000
....
....
....

label1:lw 0x04000064

P What is the machine code?

Branch example
P If you have the following code:

beq $a1, $s0, label1 0x04000000
....
....
....

label1:lw 0x04000064

P What is the machine code?
P Opcode : 0x04 -> 001000
P RS : 0x05 -> 00101
P RT : 0x11 -> 10001
P label1 is 100 memory location away from bne instruction
< 100 - 4 = 96
< 96/4 = 24 (24 instructions away from bne)
< So the immediate value is 0x0018

P CODE : 0010 0000 1011 0001 0000 0000 0001 1000
P CODE : 0x20B10018

jump Target field (26 bits)

Upper
4bits Rest of PC

Upper
4bits Target field (26 bits) 00

Current PC

Target PC

Jump Instruction
P Instructions always start on an address that is a multiple of four

(they are word-aligned). So the low order two bits of a 32-bit
instruction address are always "00". Shifting the 26-bit target left
two places results in a 28-bit word-aligned address (the low-order
two bits become "00".)

P Now all we need is to fill in the high-order four bits of the address.
These four bits come from the high-order four bits in the PC. These
are concatenated to the high-order end of the 28-bit address to
form a 32-bit address.

Jump example
P If you have the following code:

j label1 0x04000000
.... 0x04000004
.... 0x04000008
.... 0x0400000C

label1: lw 0x04000010

P What is the machine code?
P Opcode : 0x02 -> 000010
P label1 address is 0x04000010
< Remove the upper 4 bits : 0x4000010
< Remove the last two bits (div by 4) : 0x1000004

P CODE : 0000 1001 0000 0000 0000 0000 0000 0100
P CODE : 0x09000004

Jump example
P If you have the following code:

j label1 0x04000000
....
....
....

label1:lw 0x04002710

P What is the machine code?

Jump example
P If you have the following code:

j label1 0x04000000
....
....
....

label1:lw 0x04002710

P What is the machine code?
P Opcode : 0x02 -> 000010
P label1 address is 0x04002710
< Remove the upper 4 bits : 0x4002710
< Remove the last two bits (div by 4) : 0x10009C4

P CODE : 0000 1001 0000 0000 0000 1001 1100 0100
P CODE : 0x0890009C4

