
Chapter 2

MIPS instructions

Registers
Storage locations for information inside the CPU
 32 Registers, $0 ... $31
 Register $0 is always 0
 Required for arithmetic and logic operations
 Access time = Clock frequency of processor

Name Register Number Usage Preserve on Call

$zero 0 constant 0 n.a.

$v0 - $v1 2 - 3 values for result and expression evaluation no

$a0 - $a3 4 - 7 arguments no

$t0 - $t7 8 - 15 temporaries no

$s0 - $s7 16 - 23 saved yes

$t8 - $t9 24 - 25 more temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address yes

Registers as Operand (Register Addressing)
 Addition and Subtraction (Integers)
 Syntax of Instructions:
 1 2,3,4

 where:
 1) operation by name
 2) operand getting result (“destination”)
 3) 1st operand for operation (“source1”)
 4) 2nd operand for operation (“source2”)

 Syntax is rigid:
 1 operator, 3 operands

Addition and Subtraction
Register as operand
 Addition in Assembly
 Example: add $s0,$s1,$s2 (in MIPS)

 Equivalent to: a = b + c (in C)
 where registers $s0,$s1,$s2 are associated with variables a, b, c

 Subtraction in Assembly
 Example: sub $s3,$s4,$s5 (in MIPS)

 Equivalent to: d = e - f (in C)
 where registers $s3,$s4,$s5 are associated with variables d, e, f

Addition and Subtraction
Register as operand
 How do the following statement?
 a = b + c + d - e

 Assume
 a is in s0
 b is in s1
 c is in s2
 d is in s3
 e is in s4

Addition and Subtraction
Register as operand
 Break into multiple instructions

add $s0, $s1, $s2 # a = b + c
add $s0, $s0, $s3 # a = a + d
sub $s0, $s0, $s4 # a = a - e

Addition and Subtraction
Register as operand
 How do we do this?
 f = (g + h) - (i + j)

 Assume
 f is in s0
 g is in s1
 h is in s2
 i is in s3
 j is in s4

Addition and Subtraction
Register as operand
 Use intermediate temporary register

add $s0,$s1,$s2 # f = g + h
add $t0,$s3,$s4 # t0 = i + j

need to save i+j, but can’t use f, so use t0
sub $s0,$s0,$t0 # f=(g+h)-(i+j)

Addition and Subtraction
Immediate operand (constant) : Immediate Addressing
 Immediates are numerical constants.
 They appear often in code, so there are special

instructions for them.
 Add Immediate:
 addi $s0,$s1,10
 f = g + 10
 where registers $s0,$s1 are associated with variables f, g

 Syntax similar to add instruction, except that last
argument is a number instead of a register.

Addition and Subtraction
No Immediate Subtraction
 There is no Subtract Immediate in MIPS: Why?
 Limit types of operations that can be done to absolute

minimum if an operation can be decomposed into a
simpler operation, don’t include it
 addi $s0,$s1,-10
 f = g - 10
 where registers $s0,$s1 are associated with variables f, g

 addi …, -X = subi …, X
 so no subi

Addition and Subtraction
Register as operand
 How do we do this?
 f = (g + 2) - (h - 7)

 Assume
 f is in s0
 g is in s1

Addition and Subtraction
Register as operand
 Again use temporary variable

addi $s0,$s1,2 # f = g + 2
addi $t0,$s2,-7 # t0 = h - 7

need to use t0 as temporary
sub $s0,$s0,$t0 # f=(g+h)-(i+j)

Register Zero
 One particular immediate, the number zero (0), appears

very often in code.
 So we define register zero ($0 or $zero) to always have

the value 0; eg
 add $s0,$s1,$zero
 f = g
 where registers $s0,$s1 are associated with variables f, g

 defined in hardware, so an instruction
 addi $0,$0,5
 will not do anything!

Memory Operations
 Variables map onto registers; what about large data

structures like arrays?
 1 of 5 components of a computer:
 memory contains such data structures

 But MIPS arithmetic instructions only operate on
registers, never directly on memory.

 Data transfer instructions transfer data between registers
and memory:
 Memory to register
 Register to memory

Memory Structure
 Divided into segments
 Data
 Text
 Stack

Dynam ic data

Static data

Reserved

Stack segm ent

Data segment

Text segm ent

7f f f f f f fh ex

10000000h ex

400000h ex

Data Transfer: Memory to Reg
Base Addressing
 To transfer a word of data, we need to specify two things:
 Register: specify this by number (0 - 31)
 Memory address: more difficult

 Think of memory as a single one dimensional array, so we can address it
simply by supplying a pointer to a memory address.

 Other times, we want to be able to offset from this pointer.

 To specify a memory address to copy from, specify two things:
 A register which contains a pointer to memory
 A numerical offset (in bytes)
 The desired memory address is the sum of these two values.
 Example:

 Assume $t0 contains 0x1200
 8($t0)
 specifies the memory address pointed to by the value in $t0, plus 8 bytes

: 0x1200 + 8 = 0x1208

Data Transfer: Memory to Reg
Base Addressing
 Load Instruction Syntax:
 1 2,3(4)

 where
 1) operation name
 2) register that will receive value
 3) numerical offset in bytes
 4) register containing pointer to memory

 Instruction Name:
 lw (meaning Load Word, so 32 bits or one word are loaded at a

time)

Data Transfer: Memory to Reg
Base Addressing
 Example:
 lw $t0,12($s0)

 This instruction will take the pointer in $s0, add 12 bytes
to it, and then load the value from the memory pointed
to by this calculated sum into register $t0

 Notes:
 $s0 is called the base register
 12 is called the offset
 offset is generally used in accessing elements of array: base reg

points to beginning of array

Data Transfer: Reg to Memory
Base Addressing
 Also want to store value from a register into memory
 Store instruction syntax is identical to Load instruction

syntax
 Instruction Name:
 sw (meaning Store Word, so 32 bits or one word are loaded at

a time)
 Example:
 sw $t0,12($s0)

 This instruction will take the pointer in $s0, add 12 bytes
to it, and then store the value from register $t0 into the
memory address pointed to by the calculated sum

Pointers vs Values
 Key Concept: A register can hold any 32-bit value. That

value can be a (signed) int, an unsigned int, a pointer
(memory address), etc.

 If you write
 add $t2,$t1,$t0
 then $t0 and $t1 better contain values

 If you write
 lw $t2,0($t0)
 then $t0 better contain a pointer

 Don’t mix these up!

Addressing: Byte vs word
 Every word in memory has an address, similar to an index

in an array
 Early computers numbered words like C numbers

elements of an array:
 Memory[0], Memory[1], Memory[2], …
 The number inside the [x] is called the “address” of a word

 Computers needed to access 8-bit bytes as well as words
(4 bytes/word)

 Today machines address memory as bytes, hence word
addresses differ by 4
 Memory[0], Memory[4], Memory[8], …

Compilation with Memory
 What offset in lw to select A[8]?
 4x8=32 to select A[8]: byte vs word
 Compile by hand using registers:
 g = h + A[8]
 g: $s1, h: $s2, $s3: base address of A

 1st transfer from memory to register:
 lw $t0,32($s3) # $t0 gets A[8]
 Add 32 to $s3 to select A[8], put into $t0

 Next add it to h and place in g
 add $s1,$s2,$t0 # $s1 = h+A[8]

Role of Registers vs. Memory
 What if more variables than registers?
 Compiler tries to keep most frequently used variable in

registers
 Writing less common to memory: spilling

 Why not keep all variables in memory?
 Smaller is faster: registers are faster than memory
 Registers more versatile:

 MIPS arithmetic instructions can read 2, operate on them, and write 1
per instruction

 MIPS data transfer only read or write 1 operand per instruction, and
no operation

Load Immediate
Immediate Addressing
 Load an immediate value into a register
 add $sp, $zero, $zero # make sure it is zero
 addi $sp, $sp, 4 # put 4 into $sp

 Limited to 16 bit constant

 Load a large immediate value (32 bit) into a register
 lui $s0, 61 # load upper 16 bits : 0000 0000 0011 1101
 # $s0 : 0000 0000 0011 1101 0000 0000 0000 0000
 addi $s0,$s0, 2304 # add lower 16 bits with 2304
 # $s0 : 0000 0000 0011 1101 0000 1001 0000 0000

Decission
 Decisions: if, if-else
 Decisions: Multiple conditions and consequences
 Inequality

How a branch works
 PC - Program counter register
 Here is a sequence of instructions. The "load" and "add"

represent typical instructions. The "jump" instruction
shows the address we wish to put into the PC. (The acutal
MIPS instruction for this involves details that we are
skipping for the moment.)
Address Instruction PC just after this

(details omitted) instruction has executed
(at the bottom of the cycle)

........ 00400000
00400000 load 00400004
00400004 add 00400008
00400008 jump 0x00400000 00400000

if Statements
 2 kinds of if statements
 if (condition) then

 statement
 if (condition) then

 statement1
– else
 statement2

 Rearrange 2nd if into following:
 if (condition) goto L1

 statement2
 go to L2
 L1: statement1
 L2:

 Not as elegant but works

MIPS Decision Instructions
Conditional branches (PC Relative Addressing)
 Decision instruction in MIPS:
 beq register1, register2, L1
 beq is “Branch if (registers are) equal”

 Same meaning as:
 if (register1 == register2) goto L1

 Complementary MIPS decision instruction
 bne register1, register2, L1
 bne is “Branch if (registers are) not equal”

 Same meaning as:
 if (register1 != register2) goto L1

MIPS Goto Instruction
Unconditional branch (Pseudodirect Addressing)
 In addition to conditional branches, MIPS has an

unconditional branch:
 j label

 Called a Jump Instruction: jump (or branch) directly to the
given label without needing to satisfy any condition

 Same meaning as:
 goto label

 Technically, it’s the same as:
 beq $0,$0,label
 since it always satisfies the condition.

Compiling if into MIPS
 Compile by hand
 if (i == j)
 f=g+h

else
 f=g-h

 Use this mapping:
 f: $s0, g: $s1, h: $s2, i: $s3, j: $s4

i = = j?

f = g – hf = g + h

E lse:

E x it:

i = j i ≠ j

Compiling if into MIPS

 Final compiled MIPS code:
 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # go to Fin
 True: add $s0,$s1,$s2 # f=g+h (true)
 Fin:

 Note: Compiler automatically creates labels to handle
decisions (branches) appropriately.

i = = j?

f = g – hf = g + h

E lse:

E x it :

i = j i ≠ j

Inequalities in MIPS
 Until now, we’ve only tested equalities (== and !=).

General programs need to test < and > as well.
 Create a MIPS Inequality Instruction:
 “Set on Less Than”
 Syntax:

 slt reg1,reg2,reg3

 Meaning:
 if (reg2 < reg3)
 reg1 = 1;

 else
 reg1 = 0;

 In computereeze, “set” means “set to 1”, “reset” means
“set to 0”.

Inequalities in MIPS
 How do we use this?
 Compile by hand:
 if (g < h) goto Less;

 Use this mapping:
 g: $s0, h: $s1

Inequalities in MIPS
 Final compiled MIPS code:
 slt $t0,$s0,$s1 # $t0 = 1 if g<h
 bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

 Branch if $t0 != 0 means (g < h)
 Register $0 always contains the value 0, so bne and beq

often use it for comparison after an slt instruction.

Inequalities in MIPS
 Now, we can implement <, but how do we implement >,

<= and >= ?
 Can we implement <= in one or more instructions using

just slt and the branches?
 What about >?
 What about >=?

Immediates in Inequalities
 There is also an immediate version of slt to test against

constants: slti
 if (g >= 1) goto Loop

Immediates in Inequalities
 There is also an immediate version of slt o test against

constants: slti
 if (g >= 1) goto Loop

 Loop: . . .
 slti $t0,$s0,1 # $t0 = 1 if
– # $s0<1 (g<1)
– beq $t0,$0,Loop # goto Loop
– # if $t0==0
– # (if (g>=1))

Multiple Condition and Consequences
 A chain of if-else statements, which we already know how

to compile:
 if(k==0)

 f=i+j

 else if(k==1)
 f=g+h

 else if(k==2)
 f=g–h

 else if(k==3)
 f=i–j

 Use this mapping:
 f: $s0, g: $s1, h: $s2, i: $s3, j: $s4, k: $s5

Multiple Condition and Consequences
 Final compiled MIPS code:

bne $s5,$0,L1 # branch k!=0
add $s0,$s3,$s4 #k==0 so f=i+j
j Exit # end of case so Exit

L1: addi $t0,$s5,-1 # $t0=k-1
bne $t0,$0,L2 # branch k!=1
add $s0,$s1,$s2 #k==1 so f=g+h
j Exit # end of case so Exit

L2: addi $t0,$s5,-2 # $t0=k-2
bne $t0,$0,L3 # branch k!=2
sub $s0,$s1,$s2 #k==2 so f=g-h
j Exit # end of case so Exit

L3: addi $t0,$s5,-3 # $t0=k-3
bne $t0,$0,Exit # branch k!=3
sub $s0,$s3,$s4 #k==3 so f=i-j

Exit:

Loops (Repetition)
 Simple loop in C
 do {

 g = g + A[i];
 i = i + j;
} while (i != h);

 Rewrite this as:
 Loop: g = g + A[i];

 i = i + j;
 if (i != h) goto Loop;

 Use this mapping:
 g: $s1, h: $s2, i: $s3, j: $s4, base of A:$s5

Loops in C/Assembly
 Final compiled MIPS code:

Loop: add $t1,$s3,$s3 #$t1= 2*i
add $t1,$t1,$t1 #$t1= 4*i
add $t1,$t1,$s5 #$t1=addr A
lw $t1,0($t1) #$t1=A[i]
add $s1,$s1,$t1 #g=g+A[i]
add $s3,$s3,$s4 #i=i+j
bne $s3,$s2,Loop # goto Loop

if i!=h

Bitwise Operations
 A bitwise operation is where a logical operation is

performed on the bits of each column of the operands.
Here is the bitwise OR between two 8-bit patterns:

0110 1100 operand
0101 0110 operand

0111 1110 result

OR Immediate Instruction
 ori d,s,const # register d <-- bitwise OR of const
 # with the contents of register $s
 # const is 16-bits, so
 # 0x0000 ... const ... 0xFFFF

 The parts of the instruction must appear in the correct order, and
const must be within the specified range. If the immediate operand
in the assembly language shows less than 16 bits (as does 0x2 in the
previous example) then the assembler expands it to the required
sixteen bits. If the assembly language specifies more than sixteen
bits, then the assembler writes an error message.

 The const part of the assembly language instruction can be a
positive decimal or a hexadecimal constant. The assembler
translates the constant into a 16-bit pattern in the machine
instruction. For example, the following two assembly language
instructions translate into the same machine language instruction:
 ori $5,$4,0x10
 ori $5,$4,16

OR operations
 Look at the instruction:
 ori $8,$0,0x2

 Sixteen bits of immediate operand 0000 0000 0000 0010 are
to be bitwise ORed with the thirty-two bits of register zero
 0000 0000 0000 0000 0000 0000 0000 0000

 This would not ordinarily be possible because the operands
are different lengths. However, MIPS zero extends the sixteen-
bit operand so the operands are the same length. Sometimes
this is called padding with zeros on the left.

 zero extension

 An OR operation is done in each column. The 32-bit result is
placed in register $8.

0000 0000 0000 0000 0000 0000 0000 0010 --zero extended

0000 0000 0000 0000 0000 0000 0000 0000 --data in register $0

0000 0000 0000 0000 0000 0000 0000 0010 --result, register $8

AND Immediate Instruction
 andi d,s,const # register d <-- bitwise AND of immediate const
 # and the contents of register $s.
 # const is a 16-bit pattern, so
 # 0x0000 ... const ... 0xFFFF

 The andi instruction does a bitwise AND of two 32-bit
patterns. At run time the 16-bit immediate operand is padded
on the left with zero bits to make it a 32-bit operand.

 The three operands of the instruction must appear in the
correct order, and const must be within the specified range.
The immediate operand in the source instruction always
specifies sixteen bits although the zeros on the left can be
omitted (such as 0x2).

Exclusive Or Immediate
 xori d,s,const # register d <-- bitwise XOR of immediate

const
 # and the contents of register $s.
 # const is a 16-bit pattern, so
 # 0x0000 ... const ... 0xFFFF

 The three operands of the instruction must appear in the
correct order, and const must be within the specified
range. If the immediate operand in the assembly program
is less than sixteen bits (such as 0x2) the assembler
expands it to sixteen. If it is more than sixteen bits the
assembler writes an error message.

Shift Left Logical
 A shift left logical of one position moves

each bit to the left by one. The low-order
bit (the right-most bit) is replaced by a
zero and the high-order bit (the left-most
bit) is discarded.

 Shifting by two positions is the same as performing a one-position shift two
times. Shifting by zero positions leaves the pattern unchanged. Shifting an
N-bit pattern left by N or more positions changes all of the bits to zero.

 sll d,s,shft # $d <-- the bits in $s shifted left logical
 # by shft positions,
 # where 0 <= shft < 32
 The ALU (arithmetic/logic unit) which does the operation pays no attention

to what the bits mean. If the bits represent an unsigned integer, then a left
shift is equivalent to multiplying the integer by two.

Shift Left Example
 Here is an 8-bit pattern (0110 1111)
 Shift it left (logical) by two.
 Code
 ori $8, $0, 0x6F # put bit pattern into register $8
 sll $9, $8, 2 # shift left logical by two

Shift Right Logical
 MIPS also has a shift right logical

instruction. It moves bits to the
right by a number of positions less
than 32. The high- order bit gets
zeros and the low- order bits are
discarded.

 If the bit pattern is regarded as an unsigned integer, or a positive two's
comp. integer, then a right shift of one bit position performs an integer
divide by two. A right shift by N positions performs an integer divide by 2N.

 The "trick" of dividing an integer by shifting should not be used in place of
the MIPS arithmetic divide instruction (which will be covered in a few
chapters). If you mean "divide" that is what you should write. But the trick
is often used in hardware, and sometimes pops up in odd software uses, so
you should know about it.

 srl d,s,shft # $d <-- logical right shift of $s by shft positions.
 # shft is a 5-bit integer, 0 <= shft < 32

AND, OR, XOR and NOR Instructions
 or d,s,t # $d <-- bitwise OR between $s with $t.
 and d,s,t # $d <-- bitwise AND between $s with $t.
 xor d,s,t # $d <-- bitwise XOR
 # between $s with $t.
 nor d,s,t # $d <-- bitwise NOR
 # between $s with $t.

NOT operation
 NOT operation is done by using the NOR instruction with

$0 as one of the operands:
 nor d,s,$0 # $d <-- bitwise NOT of $s.

MOVE as OR with Zero
 Copying the pattern in a source register to a destination

register is called a move operation, even though the
source register does not change.
 or d,s,$0 # $d <-- contents of $s.

Program Logical Operations
 Start out a program with the instruction that puts a single

one-bit into register one:
 ori $1,$0,0x01

 Now, by using only shift instructions and register to
register logic instructions, put the pattern 0xFFFFFFFF
into register $1. Don't use another andi, ori or xori
instruction. You will need to use more registers than $1.
See how few instructions you can do this in. My program
has 11 instructions.

Shift Right Arithmetic
▪ A right shift logical with two's complement negative integers does not
work as division by two. The problem is that a shift right logical moves
zeros into the high order bit. This is correct in some situations, but not
for dividing two's complement negative integers. An arithmetic right
shift replicates the sign bit as needed to fill bit positions:

The sra Instruction
 MIPS has a shift right arithmetic instruction:
 sra d,s,shft # $d <-- s shifted right
– # shft bit positions.
– # 0 =< shft < 31

 Sometimes you need to divide by two. This instruction is
faster and more convenient than the div instruction.

Multiplication
 The product of two N-place

decimal integers may need 2N
places. This is true for numbers
expressed in any base. In
particular, the product of two
integers expressed with N- bit
binary may need 2N bits. For
example, here, two 8-bit
unsigned integers are multiplied
using the usual paper-and-pencil
multiplication algorithm (but
using binary arithmetic)

 The two 8-bit operands result in
a 15-bit product. Also shown is
the same product done with base
16 and base 10 notation.

10110111 B7 18310

10100010 A2 16210

-------- -- -----

00000000

10110111.

00000000..

00000000...

00000000....

10110111.....

00000000......

10110111.......

--------------- ---- -------

111001111001110 73CE 2964610

Multiplication Operation

 The multiply unit of MIPS contains two 32-bit registers called hi and
lo. These are not general purpose registers. When two 32-bit
operands are multiplied, hi and lo hold the 64 bits of the result. Bits
32 through 63 are in hi and bits 0 through 31 are in lo.

 Here are the instructions that do this. The operands are contained in
general-purpose registers.
 mult s,t # hilo <-- $s * $t. two's comp operands
 multu s,t # hilo <-- $s * $t. unsigned operands

 Note: with add and addu, the operation carried out is the same with
both instructions. The "u" means "don't trap overflow". With mult
and multu, different operations are carried out. Neither instruction
every causes a trap.

The mfhi and mflo Instructions
 There are two instructions that move the result of a

multiplication into a general purpose register:
 mfhi d # d <-- hi. Move From Hi
 mflo d # d <-- lo. Move From Lo

 The hi and lo registers cannot be used with any of the
other arithmetic or logic instructions. If you want to do
something with a product, it must first be moved to a
general purpose register. However there is a further
complication on MIPS hardware:
 Rule: Do not use a multiply or a divide instruction within two

instructions after mflo or mfhi. The reason for this involves the
way the MIPS pipeline works. On the SPIM simulator this rule
does not matter.

Example
 Let us write a program that evaluates the formula 5 * x -

74 where the value x is in register $8. Assume that x is
two's complement. Here is the program:

newMult.asm

Program to calculate 5 × x - 74

#

Register Use:

$8 x

$9 result

.text

.globl main

main: ori $8, $0, 12 # put x into $8

ori $___, $0, 5 # put 5 into $___

mult $___, $___ # ___ <--5x

mflo $___ # $___ = 5x

addiu $___, $___,-74 # $___ = 5x -74

End of file

Solution to Example
 Here is the completed program. Only one additional register is

needed. Register $9 is used to accumulate the result in several
steps.

newMult.asm

Program to calculate 5 × x - 74

#

Register Use:

$8 x

$9 result

.text

.globl main

main: ori $8, $0, 12 # put x into $8

ori $9, $0, 5 # put 5 into $9

mult $9, $8 # lo<--5x

mflo $9 # $9 = 5x

addiu $9, $9,-74 # $9 = 5x -74

End of file

The div and the divu Instructions

 With N-digit integer division there are two results, an N-digit
quotient and an N-digit remainder. With 32-bit operands there
will be (in general) two 32-bit results. MIPS uses the hi and lo
registers for the results:

 Here are the MIPS instructions for integer divide. The "u"
means operands and results are in unsigned binary.
 div s,t # lo <-- s div t
– # hi <-- s mod t
– # two's complement
 divu s,t # lo <-- s div t
– # hi <-- s mod t
– # unsigned

Example
 For this example say that we wish to calculate (y + x) / (y - x). The argument x is in

$8; y is in $9. The quotient is to be placed in $10 and the remainder in $11.

divEg.asm

Program to calculate (y + x) / (y - x)

##

Register Use:

$8 x

$9 y

$10 x/y

$11 x%y

.text

.globl main

main: ___ $8, $0, 8 # put x into $8

___ $9, $0, 36 # put y into $9

addu $10, $__, $__ # $10 <-- (y+x)

subu $11, $__, $__ # $11 <-- (y-x)

div $__, $__ # hilo <--(y+x)/(y-x)

____ $10 # $10 <--quotient

____ $11 # $11 <-- remainder

End of file

Example
 Here is the complete program:
divEg.asm

Program to calculate (y + x) / (y - x)

##

Register Use:

$8 x

$9 y

$10 x/y

$11 x%y

.text

.globl main

main: ori $8, $0, 8 # put x into $8

ori $9, $0, 36 # put y into $9

addu $10, $9, $8 # $10 <-- (y+x)

subu $11, $9, $8 # $11 <-- (y-x)

div $10, $11 # hilo <--(y+x)/(y-x)

mflo $10 # $10 <--quotient

mfhi $11 # $11 <-- remainder

End of file

Addressing mode summary

B y te H a lfw ord W o rd

R e g is te rs

M e m o r y

M e m o r y

W o rd

M e m o r y

W o rd

R e g is te r

R e g is te r

1 . Im m e d ia te a dd re s s in g

2 . R eg is te r a d d re ss in g

3 . B a s e ad dres s in g

4 . P C -re la tive a dd re ss in g

5 . P se u d o d ire ct ad dres s in g

o p rs r t

o p rs r t

o p rs r t

o p

o p

rs r t

A d dre s s

A d dre s s

A d d re ss

rd . . . fu nc t

Im m e d ia te

P C

P C

+

+

3 examples

	Chapter 2�
	Registers
	Registers as Operand (Register Addressing)
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Addition and Subtraction
	Register Zero
	Memory Operations
	Memory Structure
	Data Transfer: Memory to Reg
	Data Transfer: Memory to Reg
	Data Transfer: Memory to Reg
	Data Transfer: Reg to Memory
	Pointers vs Values
	Addressing: Byte vs word
	Compilation with Memory
	Role of Registers vs. Memory
	Load Immediate
	Decission
	How a branch works
	if Statements
	MIPS Decision Instructions
	MIPS Goto Instruction
	Compiling if into MIPS
	Compiling if into MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Immediates in Inequalities
	Immediates in Inequalities
	Multiple Condition and Consequences
	Multiple Condition and Consequences
	Loops (Repetition)
	Loops in C/Assembly
	Bitwise Operations
	OR Immediate Instruction
	OR operations
	AND Immediate Instruction
	Exclusive Or Immediate
	Shift Left Logical
	Shift Left Example
	Shift Right Logical
	AND, OR, XOR and NOR Instructions
	NOT operation
	MOVE as OR with Zero
	Program Logical Operations
	Shift Right Arithmetic
	The sra Instruction
	Multiplication
	Multiplication Operation
	The mfhi and mflo Instructions
	Example
	Solution to Example
	The div and the divu Instructions
	Example
	Example
	Addressing mode summary
	3 examples

