
Chapter 1

The Role of Performance Measurement

Performance

 Purchasing perspective
 given a collection of machines, which has the

 best performance ?
 least cost ?
 best performance / cost ?

 Design perspective
 faced with design options, which has the

 best performance improvement ?
 least cost ?
 best performance / cost ?

 Both require
 basis for comparison
 metric for evaluation

 Our goal is to understand cost & performance implications of
architectural choices

What does it means?

Two Notions of performance

 Which has higher Performance?
 Response Time
 Time to do a task

 execution time, response time, latency
 Throughput
 Task per time

 throughput, bandwidth
 Response Time and Throughput are often in opposition

Airplane Passenger Capacity Cruising range Cruising speed Passenger
Throughput

Boeing 777 375 4630 610 228750

Boeing 747 470 4150 610 286700

BAC/Sud Concorde 132 4000 1350 178200

Douglas DC-8-50 146 8720 544 79424

The winner?

 If we define performance by speed, we have two possibilities:
 Highest cruising speed -> Concorde wins
 Taking a single passenger with the least time -> 747 wins

 Performance is defined by many parameters
 The same with computers
 Reduce response time
 Increase thoughput

Airplane Passenger Capacity Cruising range Cruising speed Passenger
Throughput

Boeing 777 375 4630 610 228750

Boeing 747 470 4150 610 286700

BAC/Sud Concorde 132 4000 1350 178200

Douglas DC-8-50 146 8720 544 79424

Example
 Do the following changes to a computer system increase

throughput, decrease response time, or both?
 Replacing with faster processor
 Adding an additional processor

 Case 1: reducing reponse time will increase throughput
 -> Both

 Case 2: adding throughput reducing waiting time
(response time)
 -> Both

Definition
 Performance is in units of things-per-second
 bigger is better

 If we are primarily concerned with response time

 How to read:
 Performace of Machine X
 Execution time of Machine X

=
1Performance

Execution timeX
X

Performance Comparison
 Greater Than or Less Than

<

>

Y

Y

X Y

Performance < Performance

1 1
Execution time Execution time

Execution time Execution time

X

X

Example

 Time of Concorde vs. Boeing 747?
 Concord is 1350 mph / 610 mph = 2.2 times faster

 Throughput of Concorde vs. Boeing 747 ?
 Concord is 178,200 pmph / 286,700 pmph = 0.62 “times faster”
 Boeing is 286,700 pmph / 178,200 pmph = 1.6 “times faster”

 Boeing is 1.6 times (“60%”)faster in terms of throughput
 Concord is 2.2 times (“120%”) faster in terms of flying time
 We will focus primarily on execution time for a single job

Airplane Passenger Capacity Cruising range Cruising speed Passenger
Throughput

Boeing 777 375 4630 610 228750

Boeing 747 470 4150 610 286700

BAC/Sud Concorde 132 4000 1350 178200

Douglas DC-8-50 146 8720 544 79424

Performance Relation
 Machine X is n times faster than Machine Y

=

= =

Performance
Performance
Performance Execution time
Performance Execution time

X

Y

X Y

Y X

n

n

Example
 Machine P runs a program in 20 seconds and Machine Q runs

the same program in 15 seconds
 How much faster is machine Q than machine P?

 We know Q is n times faster than P

 Thus the performance ratio is 20/15 = 1.33..
 And Q is 1.33.. Times faster than P

=

=

Performance
Performance
Execution time
Execution time

Q

P

P

Q

n

n

Measuring Performance
 Time is the measure of computer performance

 The computer that perform the same amount of work in
the least time is the fastest

 Program execution time is seconds per program
 The most straightforward is
 Wall clock time
 Response time
 Elapsed time

What is execution time or elapsed time?
 Problem: Computer are often time shared

 Distinguish between elapsed time and CPU time.
 CPU time is the time the processor is working on our program

(does not include time spent on I/O or other program)
 CPU time can be divided into

 User CPU time
 System CPU time

 Difficult to measure
 Performance
 CPU performance
 System performance

Example
 Unix time for a task or program
 90.7u 12.9s 2:39 65%
 User CPU time is 90.7 seconds
 System CPU time is 12.9 seconds
 Elapsed time is 2 minutes 39 seconds (159 seconds)
 The percentage of the elapsed time that is the CPU time is

65%

 35 % is spent on I/O and other programs

+
=

90.7 12.9 0.65
159

Clock cycle
Almost all computer runs at a constant rate clock
 Other name for clock cyles : ticks, clock ticks, clock

periods, clock, cycles.
 Clock period is the inverse of clock cycle
 Ex: 2 ns clock period is 500 MHz clock cycle

Relating the metric

 Hardware designer can improve performance by reducing
 the length of the clock cycle or
 the number of clock cycle per program

CPU execution time=CPU clockcycle×clockcycletime
CPU clockcycle

CPU execution time=
clockrate

 or
seconds cycles seconds= ×
program program cycles

Example 1
Improving performance

 Machine A which has 500 MHz clock runs a program in 5
seconds
 What is the CPU cyle of machine A?
 We improve machine A with a new machine B which has 750

MHz clock. Assuming the same clock cyle, how long does the
same program runs on B?

 We improve machine A with a new machine C whic has 1000
MHz clock but the number of cycle is 1.3 times the number of
cyle of machine A. How long does the same program runs on
C?

Answer

=

=
×

= × × = ×

6

6 6

5
500 10

5 500 10 2500 10

A
A

A

A

A

CPUclock cycle
CPUtime

Clock rate
CPUclock cycle

CPUclock cycle cycle

Answer
 CPU time for machine B:

 CPU time for machine C:

seconds

=

×
= =

×

6

6

2500 10 3.3333
750 10

A
B

B

B

CPUclock cycle
CPUtime

Clock rate

CPUtime

seconds

×
=

× ×
= =

×

6

6

1.3

1.3 2500 10 3.25
1000 10

A
C

C

C

CPUclock cycle
CPUtime

Clock rate

CPUtime

Example 2
 Machine A which has 500 MHz clock runs a program in 10 seconds.
 We want to build a machine that will run the same program in 6

seconds. What is the clock rate of a new machine D if the clock cycle is
increased by 1.2 times?

Example 2
 Machine A which has 500 MHz clock runs a program in 10 seconds.
 We want to build a machine that will run the same program in 6

seconds. What is the clock rate of a new machine D if the clock cycle is
increased by 1.2 times?

=

=
×

= ×
×

=

× ×
=

= × =

6

6

6

6

10
500 10

5000 10
1.2

1.2 5000 106

1000 10 1

A
A

A

A

A

A
D

D

D

D

CPUclock cycle
CPUtime

Clock rate
CPUclock cycle

CPUclock cycle cycles
CPUclock cycle

CPUtime
Clock rate

Clock rate

Clock rate GHz

Hardware Software Interface
 Execution must depends on the number of instruction per

program
 Compiler generated the instructions to be execute and the

machine had to execute the instructions to run the program

 The average number of cycles per instruction is abbreviated
as CPI - clock cycles per instruction

= ×CPUclock cycle Instructions for a program
Averageclock cycle per instruction

Example
 Suppose we have two machine with the same ISA
 Machine A: clock cycle 1.5 ns and CPI 2
 Machine B: clock cycle 2ns and CPI 1.75
 Which one is faster and by how much?

Answer
 CPU cycles

 CPU time

= ×
= ×

2
1.75

A

B

CPUclock cycle I
CPUclock cycle I

= ×
= × × = ×
= × × = ×

2 1.5 3.0
1.75 2 3.5

A A A

A

B

CPUtime CPUclock cyle Clock cycletime
CPUtime I ns I ns
CPUtime I ns I ns

Answer
 Comparison

 Machine A is 1.167 faster than machine B for this
program

=

×
= =

×
3.5

1.167
3.0

A B

B A

B

A

CPU performance Executiontime
CPU performance Executiontime
Executiontime I ns
Executiontime I ns

Performance equation

Program

= × ×
×

=

= × ×

CPUtime Instructioncount CPI Clock cycletime
Instructioncount CPI

CPUtime
Clock rate

Clock cyclesInstructions SecondsTime
Instruction Clock cycle

Aspect of CPU performance

Program
= × ×

Clock cyclesInstructions SecondsTime
Instruction Clock cycle

Instruction
Count CPI Clock rate

Program x

Compiler x x

ISA x x

Organization x x

Technology x

How do we obtain these numbers?
 We can measure CPU execution time
 We can get clock cycle time
 Instruction count and CPI are very difficult to obtain
 Instruction count:
 Profiler
 Trace
 Simulator

 CPI
 Detail simulation
 Hand count clock cycle for each instruction

CPI
 Several different classes of instructions
 n many instruction classes
 Ci is the count of the number of instructions of class i

executed
 CPIi is the average number of cycles per instruction in

class i
 CPU clock cycles

=

= ×

= × + × + × + + ×

∑


1

1 1 2 2 3 3

n

i i
i

n n

CPUclock cycle CPI C

CPI C CPI C CPI C CPI C

Example
 Machine facts

 A compiler generates two code sequence

 Which code sequence has the most instructions?
 Which one is faster?
 What is the CPI?

Instruction Class CPI for this class

A 1

B 2

C 3

Instruction Count for instruction class

Code A B C

1 2 1 2

2 4 1 1

Answer
 Code Sequence
 Sequence 1 : 2 + 1 + 2 = 5 instructions
 Sequence 2 : 4 + 1 + 1 = 6 instructions
 Sequence 2 has more instructions

 CPU clock cycles

 Sequence 1 : (2x1)+(1x2)+(2x3)=10 cycles
 Sequence 2 : (4x1)+(1x2)+(1x3)= 9 cycles
 Sequence 2 is faster

=

= ×

= × + × + ×

∑
3

1

1 1 2 2 3 3

i i
i

CPUclock cycle CPI C

CPI C CPI C CPI C

Answer
 CPI

=

= = =

= = =

1
1

1

2
2

2

10 2
5
9 1.5
6

CPUclock cycles
CPI

InstructionCount
CPUclock cycles

CPI
InstructionCount
CPUclock cycles

CPI
InstructionCount

A Simple Example
 Ci = Frequency

Operation Freq CPIi Freq x CPIi

ALU 50% 1 0.5

Load 20% 5 1

Store 10% 3 0.3

Branch 20% 2 0.4

∑ 2.2

A Simple Example
 Machine A:
 How much faster would the machine be if a better data cache

reduced the average load time to 2 cycles?

 Machine B:
 How does this compare with using branch prediction to shave

a cycle off the branch time?

Original Machine Machine A Machine B

Operation Freq CPIi Freq x CPIi CPIi Freq x CPIi CPIi Freq x CPIi

ALU 50% 1 0.5

Load 20% 5 1

Store 10% 3 0.3

Branch 20% 2 0.4

∑ = 2.2

A Simple Example
 Machine A:
 How much faster would the machine be if a better data cache

reduced the average load time to 2 cycles?

 Machine B:
 How does this compare with using branch prediction to shave

a cycle off the branch time?

Original Machine Machine A Machine B

Operation Freq CPIi Freq x CPIi CPIi Freq x CPIi CPIi Freq x CPIi

ALU 50% 1 0.5 1 0.5 1 0.5

Load 20% 5 1 2 0.4 5 1

Store 10% 3 0.3 3 0.3 3 0.3

Branch 20% 2 0.4 2 0.4 1 0.2

∑ = 2.2 ∑ = 1.6 ∑ = 2

Choosing Programs to Evaluate Performance
 Workload is a set of application programs that the machine runs to

measure performance
 Benchmark is a set of programs specifically chosen for measuring

performance

Actual Target
Workload

very specific
 non-portable
 difficult to run, or
measure
 hard to identify cause

representative

PROs CONs

Full Benchmarks Less representative
Portable
Widely used
Improvements useful
in reality

Small “Kernel”
Benchmarks Easy to foolEasy to run

early in design cycle

Micro benchmarks
Peak may be a long
way from application

performance

Identify peak
capability and
potential bottleneck

SPEC Benchmarks www.spec.org

SPEC CPU Benchmark
 Programs used to measure performance
 Supposedly typical of actual workload

 Standard Performance Evaluation Corp (SPEC)
 Develops benchmarks for CPU, I/O, Web, …

 SPEC CPU2006
 Elapsed time to execute a selection of programs

 Negligible I/O, so focuses on CPU performance
 Normalize relative to reference machine
 Summarize as geometric mean of performance ratios

 CINT2006 (integer) and CFP2006 (floating-point)

n
n

1i
iratio time Execution∏

=

CINT2006 for Opteron X4 2356
Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0

Geometric mean 11.7

High cache miss rates

SPEC Power Benchmark
 Power consumption of server at different workload levels
 Performance: ssj_ops/sec
 Power: Watts (Joules/sec)

















= ∑∑

==

10

0i
i

10

0i
i powerssj_ops Wattper ssj_ops Overall

SPECpower_ssj2008 for X4
Target Load % Performance (ssj_ops/sec) Average Power (Watts)

100% 231,867 295
90% 211,282 286
80% 185,803 275
70% 163,427 265
60% 140,160 256
50% 118,324 246
40% 920,35 233
30% 70,500 222
20% 47,126 206
10% 23,066 180
0% 0 141

Overall sum 1,283,590 2,605
∑ssj_ops/ ∑power 493

Power Trends
 Power consumption – especially in the embedded market

where battery life is important (and passive cooling)
 For power-limited applications, the most important metric is

energy efficiency

= × ×2Power Capacitive load Voltage Frequency

x 30 5v → 1V x 1000

Reducing Power
 Suppose a new CPU has
 85% of capacitive load of old CPU
 15% voltage and 15% frequency reduction

 The power wall
 We can’t reduce voltage further
 We can’t remove more heat

 How else can we improve performance?

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
××

×××××
=

Fallacy: Low Power at Idle
 Look back at X4 power benchmark
 At 100% load: 295W
 At 50% load: 246W (83%)
 At 10% load: 180W (61%)

 Google data center
 Mostly operates at 10% – 50% load
 At 100% load less than 1% of the time

 Consider designing processors to make power
proportional to load

Uniprocessor Performance

Constrained by power, instruction-level parallelism, memory
latency

Multiprocessors
 Multicore microprocessors
 More than one processor per chip

 Requires explicitly parallel programming
 Compare with instruction level parallelism

 Hardware executes multiple instructions at once
 Hidden from the programmer

 Hard to do
 Programming for performance
 Load balancing
 Optimizing communication and synchronization

Amdahl’s Law
 Speedup : how a machine performs after enhancement
 Law of diminishing returns

Improvement

= =

= +

()

()

PerformancewithE Executiontimewithout E
Speedup E

Performancewithout E ExecutiontimewithE
Execution time E Executiontimeunaffected

ExecutiontimewithE
Amount of

Example 1
 A program runs on a machine for 10 seconds. 50 % of the

time is doing multiplications. If we improve the
multiplication unit so that it runs twice as fast, how big is
the speedup?

Example 1
 A program runs on a machine for 10 seconds. 50 % of the time

is doing multiplications. If we improve the multiplication unit
so that it runs twice as fast, how big is the speedup?

 Not two times faster

= +

= + =

= =

()

5
() 5 7.5

2
10() 1.3333
7.5

Affected extime
Extime E unaffected extime

improvement
s

Extime E s s

sSpeedup E
s

Example 2
 A program runs for 10 seconds. 70% of the time is doing

additions. How much improvement on the additions if
we want to reduce the running time to 3 seconds?

Example 2
 A program runs for 10 seconds. 70% of the time is doing additions. How

much improvement on the additions if we want to reduce the running time
to 3 seconds?

 No amount of improvement can reduce the running time to 3 seconds.

= +

= + −

= +

=

()

7
3 (10 7)

7
3 3

7
0

Affected extime
Extime E unaffected extime

improvement
s

s s
n
s

s s
n
s

n

MIPS
 Instruction Rate

 Faster machine have higher MIPS rating (?)

=
× 610

InstructionCount
MIPS

Executiontime

Example

 Assume the machine is running at 500 Mhz.
 Which one is faster according to execution time?
 Which one is faster according to MIPS?

Instruction count (billions)

Code from A B C

Compiler 1 5 1 1

Compiler 2 10 1 1

Instruction Class CPI for this class

A 1

B 2

C 3

Answer
 Execution Time

 CPU clock cyle1 = (5x1)+(1x2)+(1x3)x109 = 10x109

 CPU clock cyle2 = (10x1)+(1x2)+(1x3)x109 = 15x109

 Execution time1 = (10x109)/(500x106) = 20 s
 Execution time2 = (15x109)/(500x106) = 30 s
 Compiler 1 produces a faster program

=

=

= ×∑
1

n

i i
i

CPU clock cycle
execution time

clock rate

CPUclock cycle CPI C

Answer
 MIPS

 Compiler 2 is faster -> MIPS fails

=
×

+ + ×
= =

×

+ + ×
= =

×

6

9

1 6

9

1 6

10

(5 1 1) 10 350
20 10

(10 1 1) 10 400
30 10

InstructionCount
MIPS

Executiontime

MIPS

MIPS

The chip manufacturing process

AMD Opteron X2 Wafer

 X2: 300mm wafer, 117 chips, 90nm technology
 X4: 45nm technology

Real Stuff: Manufacturing Pentium
 There are 196 Pentium dies in an 8-inch wafer
 Only 76 Pentium Pro dies in an 8-inch wafer
 Fewer dies -> higher cost
 Cost increased futher because larger die is much more

likely to contain defects

×

  + ×    

2

Cost per waferCost per die =
Dies per wafer yield

Wafer areaDies per wafer =
Die area

1Yield =
Die area1 Defects per area

2

	Chapter 1
	Performance
	Two Notions of performance
	The winner?
	Example
	Definition
	Performance Comparison
	Example
	Performance Relation
	Example
	Measuring Performance
	What is execution time or elapsed time?
	Example
	Clock cycle
	Relating the metric
	Example 1
	Answer
	Answer
	Example 2
	Example 2
	Hardware Software Interface
	Example
	Answer
	Answer
	Performance equation
	Aspect of CPU performance
	How do we obtain these numbers?
	CPI
	Example
	Answer
	Answer
	A Simple Example
	A Simple Example
	A Simple Example
	Choosing Programs to Evaluate Performance
	SPEC Benchmarks www.spec.org
	SPEC CPU Benchmark
	CINT2006 for Opteron X4 2356
	SPEC Power Benchmark
	SPECpower_ssj2008 for X4
	Power Trends
	Reducing Power
	Fallacy: Low Power at Idle
	Uniprocessor Performance
	Multiprocessors
	Amdahl’s Law
	Example 1
	Example 1
	Example 2
	Example 2
	MIPS
	Example
	Answer
	Answer
	The chip manufacturing process
	AMD Opteron X2 Wafer
	Real Stuff: Manufacturing Pentium

